Advances in pediatric neuro-oncology

Eileen Gillan, Ching C. Lau

Abstract


The field of pediatric neuro-oncology research has undergone succession of rapid advances in the past ten years at an incredible pace. Most of these advances were driven by genomic and epigenomic characterizations of large cohort of samples assembled through international collaboration. As a result of these efforts, robust molecular markers of several types of pediatric brain tumors have been developed for diagnostic and prognostic applications.

Keywords


pediatric neuro-oncology; targeted therapy; medulloblastoma; ependymoma; low grade glioma; high grade glioma; intracranial germ cell tumor

Full Text:

PDF

References


Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol 2016; 131(6): 803–820. doi: 10.1007/s00401-016-1545-1.

Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 2012; 123(4): 465–472. doi: 10.1007/s00401-011-0922-z.

Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, et al. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 2016; 29(4): 508–522. doi: 10.1016/j.ccell.2016.03.002.

Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog–subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J Clin Oncol 2015; 33(24): 2646–2654. doi: 10.1200/JCO.2014.60.1591.

Pietsch T, Wohlers I, Goschzik T, Dreschmann V, Denkhaus D, et al. Supratentorial ependymomas of childhood carry C11orf95–RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathol 2014; 127(4): 609–611. doi: 10.1007/s00401-014-1264-4.

Parker M, Mohankumar KM, Punchihewa C, Weinlich R, Dalton JD, et al. C11orf95–RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 2014; 506(7489): 451–455. doi: 10.1038/nature13109.

Witt H, Mack SC, Ryzhova M, Bender S, Sill M, et al. Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 2011; 20(2): 143–157. doi: 10.1016/j.ccr.2011.07.007.

Thompson YY, Ramaswamy V, Diamandis P, Daniels C, Taylor MD. Posterior fossa ependymoma: Current insights. Childs Nerv Syst 2015; 31(10): 1699–1706. doi: 10.1007/s00381-015-2823-2.

Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S, et al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 2014; 506(7489): 445–450. doi: 10.1038/nature13108.

Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482(7384): 226–231. doi: 10.1038/nature10833.

Wu G, Diaz AK, Paugh BS, Rankin SL, Ju B, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014; 46(5): 444–450. doi: 10.1038/ng.2938.

Jones C, Karajannis MA, Jones DTW, Kieran MW, Monje M, et al. Pediatric high-grade glioma: Biologically and clinically in need of new thinking. Neuro Oncol 2017; 19(2): 153–161. doi: 10.1093/neuonc/now101.

Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 2014; 46(5): 451–456. doi: 10.1038/ng.2936.

Schindler G, Capper D, Meyer J, Janzarik W, Omran H, et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121(3): 397–405. doi: 10.1007/s00401-011-0802-6.

Sievert AJ, Jackson EM, Gai X, Hakonarson H, Judkins AR, et al. Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene. Brain Pathol 2009; 19(3): 449–458. doi: 10.1111/j.1750-3639.2008.00225.x.

Jones DTW, Hutter B, Jäger N, Korshunov A, Kool M, et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013; 45(8): 927–932. doi: 10.1038/ng.2682.

Lassaletta A, Guerreiro Stucklin A, Ramaswamy V, Zapotocky M, McKeown T, et al. Profound clinical and radiological response to BRAF inhibition in a 2-month-old diencephalic child with hypothalamic/chiasmatic glioma. Pediatr Blood Cancer 2016; 63(11): 2038–2041. doi: 10.1002/pbc.26086.

Hütt-Cabezas M, Karajannis MA, Zagzag D, Shah S, Horkayne-Szakaly I, et al. Activation of mTORC1/mTORC2 signaling in pediatric low-grade glioma and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol 2013; 15(12): 1604–1614. doi: 10.1093/neuonc/not132.

Raza A, Tsang YTM, Yu Z, Adesina A, Aldape K, et al. Overexpression of Sema3E and Sema5A in pilocytic astrocytoma. Adv Mod Oncol Res; 3(5): doi: 10.18282/amor.v3.i5.243.

Wang L, Yamaguchi S, Burstein MD, Terashima K, Chang K, et al. Novel somatic and germline mutations in intracranial germ cell tumours. Nature 2014; 511(7508): 241–245. doi: 10.1038/nature13296.

Fukushima S, Otsuka A, Suzuki T, Yanagisawa T, Mishima K, et al. Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas. Acta Neuropathol 2014; 127(6): 911–925. doi: 10.1007/s00401-014-1247-5.

Schulte SL, Waha A, Steiger B, Denkhaus D, Dörner E, et al. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways. Oncotarget 2016; 7(34): 55026–55042. doi: 10.18632/oncotarget.10392.

Fukushima S, Yamashita S, Kobayashi H, Takami H, Fukuoka K, et al. Genome-wide methylation profiles in primary intracranial germ cell tumors indicate a primordial germ cell origin for germinomas. Acta Neuropathol 2017; 133(3): 445–446. doi: 10.1007/s00401-017-1673-2.

Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, et al. JMJD1C, a JmjC domain-containing protein, is required for long-term maintenance of male germ cells in mice. Biol Reprod 2013; 89(4): 93(1–9). doi: 10.1095/biolreprod.113.108597.




DOI: http://dx.doi.org/10.30564/amor.v3i5.135

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Eileen Gillan, Ching C. Lau

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.