MicroRNAs in neuroblastoma differentiation and differentiation therapy

Michaela Sousares, Veronica Partridge, Shannon Weigum, Liqin Du


Neuroblastoma is one of the most common and aggressive types of pediatric cancers, making up about 7% of all childhood cancers. Neuroblastoma arises from the failure of neural crest cell precursors to differentiate, and inducing cell differentiation is one of the most important treatment approaches for neuroblastoma. MicroRNAs regulate gene expression by performing post-transcriptional gene modification by mainly translational suppression and mRNA degradation. The dysregulation of these molecules has been shown to be related to tumor development, tumor metastasis and drug resistance, and the promise of developing microRNA-based therapeutics for cancers has been demonstrated. Many recent studies have also provided evidence for the involvement of microRNAs in differentiation of neuroblastoma cells, suggesting the potential of developing microRNA-based differentiation therapies for neuroblastoma. Here we review the recent findings on the role of microRNAs in regulating cell differentiation, with a main focus on neuroblastoma cells. The investigations on the therapeutic potential of microRNAs in neuroblastoma therapy and differentiation therapy are also reviewed.


neuroblastoma; differentiation; microRNAs; tumorigenesis

Full Text:



Park JR, Eggert A, Caron H. Neuroblastoma: Biology, prognosis, and treatment. Hematol Oncol Clin North Am 2010; 24(1): 65–86. doi: 10.1016/j.hoc.2009.11.011

Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. Cancer statistics, 2009, CA Cancer J Clin 2009; 59(4): 225–249. doi: 10.3322/caac.20006

Cancer.net. Neuroblastoma—Childhood: Statistics [Internet]. Alexandria, VA, USA: American Society of Clinical Oncology. [cited YYYY MM DD]. Available from: http://www.cancer.net/cancer-types/neuroblastoma-childhood/statistics

Louis CU, Shohet JM. Neuroblastoma: Molecular pathogenesis and therapy. Ann Rev Med 2015; 66: 49–63. doi: 10.1146/annurev-med-011514-023121

Brodeur GM, Bagatell R. Mechanisms of neuroblastoma regression. Nat Rev Clin Oncol 2014; 11(12): 704–713. doi: 10.1038/nrclinonc.2014.168

Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, et al. Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 2009; 15(10): 3244–3250. doi: 10.1158/1078-0432.CCR-08-1815

Thiele CJ, Li Z, McKee AE. On Trk—The TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 2009; 15(19): 5962–5967. doi: 10.1158/1078-0432.CCR-08-0651

Watson JD, Baker TA, Bell SP, Gann A, Levine M, et al. Molecular biology of the gene. 7th ed. Cold Spring Harbor, NY, USA: Pearson; 2013. p. XX.

Hahn CK, Ross KN, Warrington IM, Mazitschek R, Kanegai CM, et al. Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Nat Acad Sci USA 2008; 105(28): 9751–9756. doi: 10.1073/pnas.0710413105

Takasaki S. Roles of microRNAs in cancers and development. Meth Mol Biol 2015; 1218: 375–413. doi: 10.1007/978-1-4939-1538-5_24

Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Ann Rev Pathol 2014; 9: 287–314. doi: 10.1146/annurev-pathol-012513-104715

Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK. miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Disc 2016; 6(3): 235–246. doi: 10.1158/2159-8290.CD-15-0893

Díaz NF, Cruz-Reséndiz MS, Flores-Herrera H, García-López G, Molina-Hernández A. MicroRNAs in central nervous system development. Rev Neurosci 2014; 25(5): 675–686. doi: 10.1515/revneuro-2014-0014

Oliveto S, Mancino M, Manfrini N, Biffo S. Role of microRNAs in translation regulation and cancer. World J Biol Chem 2017; 8(1): 45–56. doi: 10.4331/wjbc.v8.i1.45

Carta A, Chetcuti R, Ayers D An introspective update on the influence of miRNAs in breast carcinoma and neuroblastoma chemoresistance. Genet Res Int 2014; 2014: 743050. doi: 10.1155/2014/743050

Stallings RL, Foley NH, Bray IM, Das S, Buckley PG. MicroRNA and DNA methylation alterations mediating retinoic acid induced neuroblastoma cell differentiation. Semin Cancer Biol 2011; 21(4): 283–290. doi: 10.1016/j.semcancer.2011.07.001

Buhagiar A, Ayers D. Chemoresistance, cancer stem cells, and miRNA influences: The case for neuroblastoma. Anal Cell Pathol (Amsterdam) 2015; 2015: 150634. doi: 10.1155/2015/150634

Almeida MI, Reis RM, Calin GA. MicroRNA history: Discovery, recent applications, and next frontiers. Mut Res 2011; 717(1–2): 1–8. doi: 10.1016/j.mrfmmm.2011.03.009

Zhi F, Wang R, Wang Q, Xue L, Deng D, et al. MicroRNAs in neuroblastoma: Small-sized players with a large impact. Neurochem Res 2014; 39(4): 613–623. doi: 10.1007/s11064-014-1247-9

Schulte JH, Horn S, Schlierf S, Schramm A, Heukamp LC, et al. MicroRNAs in the pathogenesis of neuroblastoma. Cancer Lett 2009; 274(1): 10–15. doi: 10.1016/j.canlet.2008.06.010

Zhao Z, Ma X, Hsiao TH, Lin G, Kosti A, et al. A high-content morphological screen identifies novel microRNAs that regulate neuroblastoma cell differentiation. Oncotarget 2014; 5(9): 2499–2512. doi: 10.18632/oncotarget.1703

Guo J, Dong Q, Fang Z, Chen X, Lu H, et al. Identification of miRNAs that are associated with tumor metastasis in neuroblastoma. Cancer Biol Ther 2010; 9(6): 446–452. doi: 10.4161/cbt.9.6.10894

Chen Y, Tsai YH, Fang Y, Tseng SH. Micro-RNA-21 regulates the sensitivity to cisplatin in human neuroblastoma cells. J Pediatr Surg 2012; 47(10): 1797–1805. doi: 10.1016/j.jpedsurg.2012.05.013

Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 2007; 67(3): 976–983. doi: 10.1158/0008-5472.CAN-06-3667

Roth SA, Knutsen E, Fiskaa T, Utnes P, Bhavsar S, et al. Next generation sequencing of microRNAs from isogenic neuroblastoma cell lines isolated before and after treatment. Cancer Lett 2016; 372(1): 128–136. doi: 10.1016/j.canlet.2015.11.026

Stallings RL. MicroRNA involvement in the pathogenesis of neuroblastoma: Potential for microRNA mediated therapeutics. Curr Pharm Des 2009; 15(4): 456–462. doi: 10.2174/138161209787315837

Barger JF, Nana-Sinkam SP. MicroRNA as tools and therapeutics in lung cancer. Respir Med 2015; 109(7): 803–812. doi: 10.1016/j.rmed.2015.02.006

Monroig Pdel C, Chen L, Zhang S, Calin GA. Small molecule compounds targeting miRNAs for cancer therapy. Adv Drug Delivery Rev 2015; 81: 104–116. doi: 10.1016/j.addr.2014.09.002

Li Y, Sarkar FH. MicroRNA targeted therapeutic approach for pancreatic cancer. Int J Biol Sci 2016; 12(3): 326–337. doi: 10.7150/ijbs.15017

Kaboli PJ, Rahmat A, Ismail P, Ling KH. MicroRNA-based therapy and breast cancer: A comprehensive review of novel therapeutic strategies from diagnosis to treatment. Pharmacol Res 2015; 97: 104–121. doi: 10.1016/j.phrs.2015.04.015

Tessitore A, Cicciarelli G, Mastroiaco V, Vecchio FD, Capece D, et al. Therapeutic use of microRNAs in cancer. Anticancer Agents Med Chem 2016; 16(1): 7–19. doi: 10.2174/1871520615666150824153358

Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, et al. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 2014; 13(1): 2352–2360. doi: 10.1158/1535-7163.MCT-14-0209

Li M, Chen SM, Chen C, Zhang ZX, Dai MY, et al. microRNA2993p inhibits laryngeal cancer cell growth by targeting human telomerase reverse transcriptase mRNA. Mol Med Rep 2015; 11(6): 4645–4649. doi: 10.3892/mmr.2015.3287

Zhao X, Zhou Y, Chen Y, Yu F. miR-494 inhibits ovarian cancer cell proliferation and promotes apoptosis by targeting FGFR2. Oncol Lett 2016; 11(6): 4245–4251. doi: 10.3892/ol.2016.4527

Long HC, Gao X, Lei CJ, Zhu B, Li L, et al. miR-542-3p inhibits the growth and invasion of colorectal cancer cells through targeted regulation of cortactin. Int J Mol Med 2016; 37(4): 1112–1118. doi: 10.3892/ijmm.2016.2505

Li D, Li DQ, Liu D, Tang XJ. MiR-613 induces cell cycle arrest by targeting CDK4 in non-small cell lung cancer. Cell Oncol (Dordr) 2016; 39(2): 139–147. doi: 10.1007/s13402-015-0262-4

Chen Z, Han S, Huang W, Wu J, Liu Y, et al. MicroRNA-215 suppresses cell proliferation, migration and invasion of colon cancer by repressing Yin-Yang 1. Biochem Biophys Res Commun 2016; 479(3): 482–488. doi: 10.1016/j.bbrc.2016.09.089

Chen T, Wang J, Liu M, Zhang LY, Liao H. Screening of natural compounds with neuronal differentiation promoting effects in a cell-based model. Chinese J Nat Med 2015; 13(8): 602–608. doi: 10.1016/S1875-5364(15)30056-X

Veschi V, Liu Z, Voss TC, Ozbun L, Gryder B, et al. Epigenetic siRNA and chemical screens identify SETD8 inhibition as a therapeutic strategy for p53 activation in high-risk neuroblastoma. Cancer Cell 2017; 31(1): 50–63. doi: 10.1016/j.ccell.2016.12.002.

Åkerblom M, Sachdeva R, Barde I, Verp S, Gentner B, et al. MicroRNA-124 is a subventricular zone neuronal fate determinant. J Neurosci 2012; 32(26): 8879–8889. doi: 10.1523/JNEUROSCI.0558-12.2012

Zou D, Chen Y, Han Y, Lv C, Tu G. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells. Neural Regen Res 2014; 9(12): 1241–1248. doi: 10.4103/1673-5374.135333

Mondanizadeh M, Arefian E, Mosayebi G, Saidijam M, Khansarinejad B, et al. MicroRNA-124 regulates neuronal differentiation of mesenchymal stem cells by targeting Sp1 mRNA. J Cell Biochem 2015; 116(6): 943–953. doi: 10.1002/jcb.25045

Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 2007; 27(3): 435–448. doi: 10.1016/j.molcel.2007.07.015

Linares AJ, Lin CH, Damianov A, Adams KL, Novitch BG, et al. The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. eLife 2015; 4: e09268. doi: 10.7554/eLife.09268.001

Grammatikakis I, Gorospe M. Identification of neural stem cell differentiation repressor complex Pnky-PTBP1. Stem Cell Investig 2016; 3(April 2016): 10. doi: 10.21037/sci.2016.03.05

Dong LL, Chen LM, Wang WM, Zhang LM. Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagn Pathol 2015; 10: 45. doi: 10.1186/s13000-015-0257-5

Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 2007; 26(34): 5017–5022. doi: 10.1038/sj.onc.1210293

Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, et al. microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Nat Acad Sci US A 2011; 108(52): 21099–21104. doi: 10.1073/pnas.1112063108

Yu X, Zhang L, Wen G, Zhao H, Luong LA, et al. Upregulated sirtuin 1 by miRNA-34a is required for smooth muscle cell differentiation from pluripotent stem cells. Cell Death Differ 2015; 22(7): 1170–1180. doi: 10.1038/cdd.2014.206

Aranha MM, Santos DM, Solá S, Steer CJ, Rodrigues CM. miR-34a regulates mouse neural stem cell differentiation. PloS One 2011; 6(8): e21396. doi: 10.1371/journal.pone.0021396

Zhao Z, Ma X, Sung D, Li M, Kosti A, et al. microRNA-449a functions as a tumor suppressor in neuroblastoma through inducing cell differentiation and cell cycle arrest. RNA Biol 2015; 12(5): 538–554. doi: 10.1080/15476286.2015.1023495

Liu T, Hou L, Zhao Y, Huang Y. Epigenetic silencing of HDAC1 by miR-449a upregulates Runx2 and promotes osteoblast differentiation. Int J Mol Med 2015; 35(1): 238–246. doi: 10.3892/ijmm.2014.2004

Capuano M, Iaffaldano L, Tinto N, Montanaro D, Capobianco V, et al. MicroRNA-449a overexpression, reduced NOTCH1 signals and scarce goblet cells characterize the small intestine of celiac patients. PloS One 2011; 6(12): e29094. doi: 10.1371/journal.pone.0029094

Foley NH, Bray I, Watters KM, Das S, Bryan K, et al. MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 2011; 18(7): 1089–1098. doi: 10.1038/cdd.2010.172

Meseguer S, Mudduluru G, Escamilla JM, Allgayer H, Barettino D. MicroRNAs-10a and -10b contribute to retinoic acid-induced differentiation of neuroblastoma cells and target the alternative splicing regulatory factor SFRS1 (SF2/ASF). J Biol Chem 2011; 286: 4150–4164. doi: 10.1074/jbc.M110.167817

Li J, Zhang Y, Zhao Q, Wang J, He X. MicroRNA-10a influences osteoblast differentiation and angiogenesis by regulating β-catenin expression. Cell Physiol Biochem 2015; 37(6): 2194-2208. doi: 10.1159/000438576

Le MTN, Xie H, Zhou B, Chia PH, Rizk P, et al. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 2009; 29(19): 5290–5305. doi: 10.1128/MCB.01694-08

Joo W, Hippenmeyer S, Luo L. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science 2014; 346(6209): 626–629. doi: 10.1126/science.1258996

Bouzas-Rodriguez J, Cabrera JR, Delloye-Bourgeois C, Ichim G, Delcros JG, et al. Neurotrophin-3 production promotes human neuroblastoma cell survival by inhibiting TrkC-induced apoptosis. J Clin Invest 2010; 120(3): 850–858. doi: 10.1172/JCI41013

Yamashiro DJ, Liu XG, Lee CP, Nakagawara A, Ikegaki N, et al. Expression and function of Trk-C in favourable human neuroblastomas. Eur J Cancer 1997; 33(12): 2054–2057. doi: 10.1016/S0959-8049(97)00309-2

Laneve P, Di Marcotullio L, Gioia U, Fiori ME, Ferretti E, et al. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc Nat Acad Sci USA 2007; 104(19): 7957–7962. doi: 10.1073/pnas.0700071104

Deng S, Zhang Y, Xu C, Ma D. MicroRNA-125b-2 overexpression represses ectodermal differentiation of mouse embryonic stem cells. Int J Mol Med 2015; 36(2): 355–362. doi: 10.3892/ijmm.2015.2238

Lin KY, Zhang XJ, Feng DD, Zhang H, Zeng CW, et al. miR-125b, a target of CDX2, regulates cell differentiation through repression of the core binding factor in hematopoietic malignancies. J Biol Chem 2011; 286: 38253–38263. doi: 10.1074/jbc.M111.269670

Gururajan M, Haga CL, Das S, Leu CM, Hodson D, et al. MicroRNA 125b inhibition of B cell differentiation in germinal centers. Int Immunol 2010; 22(7): 583–592. doi: 10.1093/intimm/dxq042

Lovén J, Zinin N, Wahlström T, Müller I, Brodin P, et al. MYCN-regulated microRNAs repress estrogen receptor-α (ESR1) expression and neuronal differentiation in human neuroblastoma. Proc Nat Acad Sci USA 2010; 107(4): 1553–1558. doi: 10.1073/pnas.0913517107

Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, et al. A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PloS One 2012; 7(2): e31022. doi: 10.1371/journal.pone.0031022

Samaraweera L, Grandinetti KB, Huang R, Spengler BA, Ross RA. MicroRNAs define distinct human neuroblastoma cell phenotypes and regulate their differentiation and tumorigenicity. BMC Cancer 2014; 14: 309. doi: 10.1186/1471-2407-14-309

Asai T, Oku N. Systemic delivery of small RNA using lipid nanoparticles. Biol Pharm Bull 2014; 37(2): 201–205. doi: 10.1248/bpb.13-00744

Ji Y, Han Z, Shao L, Zhao Y. Evaluation of in vivo antitumor effects of low-frequency ultrasound-mediated miRNA-133a microbubble delivery in breast cancer. Cancer Med 2016; 5(9): 2534–2543. doi: 10.1002/cam4.840

Sun Z, Song X, Li X, Su T, Qi S, et al. In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale 2014; 6(23): 14343–14353. doi: 10.1039/c4nr03003f

Chen L, Holmstrom K, Qiu W, Ditzel N, Shi K, Hokland L, et al. MicroRNA-34a inhibits osteoblast differentiation and in vivo bone formation of human stromal stem cells. Stem Cells 2014; 32(4): 902–912. doi: 10.1002/stem.1615

Zhang Q, Yan W, Bai Y, Xu H, Fu C, et al. Synthetic miR-145 mimic inhibits multiple myeloma cell growth in vitro and in vivo. Oncol Rep 2015; 33(1): 448–456. doi: 10.3892/or.2014.3591

Fang ZH, Wang SL, Zhao JT, Lin ZJ, Chen LY, et al. miR-150 exerts antileukemia activity in vitro and in vivo through regulating genes in multiple pathways. Cell Death Dis 2016; 7(9): e2371. doi: 10.1038/cddis.2016.256

Jones R, Watson K, Bruce A, Nersesian S, Kitz J, et al. Re-expression of miR-200c suppresses proliferation, colony formation and in vivo tumor growth of murine claudin-low mammary tumor cells. Oncotarget 2017; 8(14): 23727–23749. doi: 10.18632/oncotarget.15829

Verissimo CS, Molenaar JJ, Fitzsimons CP, Vreugdenhil E. Neuroblastoma therapy: What is in the pipeline? Endocr Relat Cancer 2011; 18(6): R213–R231. doi: 10.1530/ERC-11-0251

Tivnan A, Tracey L, Buckley PG, Alcock LC, Davidoff AM, et al. MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 2011; 11: 33. doi: 10.1186/1471-2407-11-33

Tivnan A, Orr WS, Gubala V, Nooney R, Williams DE, et al. Inhibition of neuroblastoma tumor growth by targeted delivery of microRNA-34a using anti-disialoganglioside GD2 coated nanoparticles. PloS One 2012; 7(5): e38129. doi: 10.1371/journal.pone.0038129

Soriano A, Paris-Coderch L, Jubierre L, Martinez A, Zhou X, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget 2016; 7(8): 9271–9287. doi: 10.18632/oncotarget.7005

DOI: http://dx.doi.org/10.30564/amor.v3i5.137


  • There are currently no refbacks.

Copyright (c) 2018 Michaela Sousares, Veronica Partridge, Shannon Weigum, Liqin Du

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.