Open Journal Systems

Biomaterial Implants: A Gateway To Cancer Through Genetics and Epigenetics

Nancy Hassanein (Biotechnology Program, American University in Cairo, AUC Avenue, P.O.Box74, New Cairo 11835, Egypt)
Asma Amleh (American University in Cairo)


Biomaterials are currently and will continue to exert a high impact in the field of medicine and biological systems. Despite their great importance to humans, biomaterials have been reported to increase the risk of various kinds of cancers. Herein we shed light on the impact of biomaterial on the accumulation of genetic and epigenetic alterations that may boost cancer risk. In addition, we identify the key elements for the selection of the most reconcilable biomaterials and tests to ensure their biocompatibility. We examined the downsides of the usage of these biomaterials; specifically, immunological foreign body response due to wear and corrosion and their ability to cause cancers. The main focus of our review is to highlight the current knowledge about how orthopedic implants may contribute to cancer formation. We conclude that, although the risk appears to be minimal, implants may contribute to the development of cancer demanding the employment of a test that gauges the mutagenicity of the biomaterial used in the various implants’ applications.


Orthopedic biomaterials; Biocompatibility; Epigenetic alterations; Genetic alterations; Cancer risk

Full Text:



Ratner BD, Bryant SJ. Biomaterials: Where We Have Been and Where We Are Going. Annual Review of Biomedical Engineering. 2004;6(1):41-75.

M. Anderson J, Cook G, Costerton B, Hanson S, Hensten-Pettersen A, Jacobsen N, et al. Host Reactions to Biomaterials and Their Evaluation. 1996. 293 p.

Pacheco KA. Epigenetics mediate environment : gene effects on occupational sensitization. Current Opinion in Allergy and Clinical Immunology. 2012;12(2):111.

Agrawal CM. Reconstructing the human body using biomaterials. JOM. 1998 Jan 1;50(1):31-35.

Gilbert JL, Mali SA. Medical Implant Corrosion: Electrochemistry at Metallic Biomaterial Surfaces. In: Degradation of Implant Materials [Internet]. Springer, New York, NY;2012 [cited 2018 Jan 21]. p. 1-28. Available from:

Chen Q, Thouas GA. Metallic implant biomaterials. Materials Science and Engineering: R: Reports. 2015 Jan 1;87:1-57.

Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants. A review.Clin Cases Miner Bone Metab. 2013 Jan;10(1):34-40.

Thomas P. Clinical and diagnostic challenges of metal implant allergy using the example of orthopaedic surgical implants. Allergo J Int. 2014;23(6):179-85.

Kasprzak KS, Sunderman FW, Salnikow K. Nickel carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2003 Dec 10;533(1):67-97.

Afolaranmi GA, Tettey J, Meek RM., Grant M. Release of Chromium from Orthopaedic Arthroplasties. Open Orthop J. 2008 Jan 24;2:10-8.

Banoriya D, Purohit R, Dwivedi RK. Advanced Application of Polymer based Biomaterials. Materials Today: Proceedings. 2017 Jan 1;4(2, Part A):3534-41.

Bronzino JD, Peterson DR. Biomedical Engineering Fundamentals. CRC Press; 2014. 1184 p.

Höland W, Schweiger M, Watzke R, Peschke A, Kappert H.Ceramics as biomaterials for dental restoration. Expert Rev Med Devices. 2008 Nov;5(6):729-45.

Tsaousi A, Jones E, Case CP. The in vitro genotoxicity of orthopaedic ceramic (Al2O3) and metal (CoCr alloy) particles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2010 Mar 29;697(1):1-9.

Rao KP. Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed. 1995;7(7):623-45.

Kaufman HE, Steinemann TL, Lehman E, Thompson HW, Varnell ED, Jacob-LaBarre JT, et al. Collagen-based drug delivery and artificial tears. J Ocul Pharmacol.1994;10(1):17-27.

Le Bao Ha T, Minh T, Nguyen D, Minh D. Naturally Derived Biomaterials: Preparation and Application. In 2013.

Jorfi M, Foster EJ. Recent advances in nanocellulose for biomedical applications. Journal of Applied Polymer Science [Internet]. [Cited 2018 Jul 5]; 132(14). Available from: 1002/app.41719

Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal.2014 Oct 1;59:302-25.

. Cherian B, Leao A, Souza S, de Olyveira GM, Costa LM,Brandão C, et al. Bacterial nanocellulose for medical implants. Advanced Structured Materials. 2013 Jan 1;18:337-59.

Long M, Rack HJ. Titanium alloys in total joint replacement--a materials science perspective. Biomaterials. 1998 Sep;19(18):1621-39.

Davis JR. Handbook of Materials for Medical Devices.ASM International; 2003. 360 p.

Bracco P, Bellare A, Bistolfi A, Affatato S. Ultra-High Molecular Weight Polyethylene: Influence of the Chemical,Physical and Mechanical Properties on the Wear Behavior.A Review. Materials (Basel) [Internet]. 2017 Jul 13 [cited 2018 Nov 1];10(7). Available from:

Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. AAPS J. 2010 Jun;12(2):188-96.

Williams DH, Greidanus NV, Masri BA, Duncan CP,Garbuz DS. Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg Am. 2011 Dec 7;93(23):2164-71.

Bisschop R, Boomsma M f, Raay J j a m V, Tiebosch A t m g, Maas M, Gerritsma C l e. High Prevalence of Pseudotumors in Patients with a Birmingham Hip Resurfacing Prosthesis: A Prospective Cohort Study of One Hundred and Twenty-nine Patients. The Journal of Bone & Joint Surgery. 2013 Sep 4;95(17):1554-60.

Smith AJ, Dieppe P, Porter M, Blom AW. Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: linkage study between the National Joint Registry of England and Wales and hospital episode statistics. BMJ. 2012 Apr 3;344:e2383.

Parry MC, Bhabra G, Sood A, Machado F, Cartwright L,Saunders M, et al. Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. Biomaterials. 2010 Jun 1;31(16):4477-83.

Signorello LB, Ye W, Fryzek JP, Lipworth L, Fraumeni JF, Blot WJ, et al. Nationwide Study of Cancer Risk Among Hip Replacement Patients in Sweden. J Natl Cancer Inst.2001 Sep 19;93(18):1405-10.

Mäkelä KT, Visuri T, Pulkkinen P, Eskelinen A, Remes V,Virolainen P, et al. Cancer incidence and cause-specific mortality in patients with metal-on-metal hip replacements in Finland. Acta Orthop. 2014 Feb;85(1):32-8.

Visuri T, Pukkala E, Paavolainen P, Pulkkinen P, Riska EB. Cancer risk after metal on metal and polyethylene on metal total hip arthroplasty. Clin Orthop Relat Res. 1996 Aug;(329 Suppl):S280-289.

Onega T, Baron J, MacKenzie T. Cancer after total joint arthroplasty: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006 Aug;15(8):1532-7.

Visuri T, Koskenvuo M. Cancer risk after Mckee-Farrar total hip replacement. Orthopedics. 1991 Feb;14(2):137-42.

Gillespie WJ, Henry DA, O’Connell DL, Kendrick S,Juszczak E, McInneny K, et al. Development of hematopoietic cancers after implantation of total joint replacement.Clin Orthop Relat Res. 1996 Aug;(329 Suppl):S290-296.

Nyrén O, McLaughlin JK, Gridley G, Ekbom A, Johnell O,Fraumeni JF, et al. Cancer risk after hip replacement with metal implants: a population-based cohort study in Sweden. J Natl Cancer Inst. 1995 Jan 4;87(1):28-33.

Knight SR, Aujla R, Biswas SP. Total Hip Arthroplasty over 100 years of operative history. Orthop Rev (Pavia) [Internet]. 2011 Nov 7 [cited 2017 Dec 19];3(2). Available from:

Gillespie WJ, Frampton CM, Henderson RJ, Ryan PM. The incidence of cancer following total hip replacement. J Bone Joint Surg Br. 1988 Aug;70(4):539-42.

Mathiesen EB, Ahlbom A, Bermann G, Lindgren JU. Totalhip replacement and cancer. A cohort study. Bone & Joint Journal. 1995 May 1;77-B(3):345-50.

Olsen JH, McLaughlin JK, Nyrén O, Mellemkjaer L,Lipworth L, Blot WJ, et al. Hip and knee implantations among patients with osteoarthritis and risk of cancer: A record-linkage study from Denmark. Int J Cancer. 1999 May 31;81(5):719-22.

Visuri T, Pukkala E, Pulkkinen P, Paavolainen P. Decreased cancer risk in patients who have been operated on with total hip and knee arthroplasty for primary osteoarthrosis:a meta-analysis of 6 Nordic cohorts with 73,000 patients.Acta Orthop Scand. 2003 Jun;74(3):351-60.

Goldacre MJ, Wotton CJ, Seagroatt V, Yeates D. Cancer following hip and knee arthroplasty: record linkage study.Br J Cancer. 2005 Apr 11;92(7):1298-301.

Lass R, Grübl A, Kolb A, Domayer S, Csuk C, Kubista B, et al. Primary cementless total hip arthroplasty with second-generation metal-on-metal bearings: a concise follow-up, at a minimum of seventeen years, of a previous report. J Bone Joint Surg Am. 2014 Mar 5;96(5):e37.

Brewster DH, Stockton DL, Reekie A, Ashcroft GP, Howie CR, Porter DE, et al. Risk of cancer following primary total hip replacement or primary resurfacing arthroplasty of the hip: a retrospective cohort study in Scotland. Br J Cancer. 2013 May 14;108(9):1883-90.

McCarthy CL, Uchihara Y, Vlychou M, Grammatopoulos G, Athanasou NA. Development of malignant lymphoma after metal-on-metal hip replacement: a case report and review of the literature. Skeletal Radiol. 2017 Jun;46(6):831-6.

Mäkelä KT, Visuri T, Pulkkinen P, Eskelinen A, Remes V,Virolainen P, et al. Risk of cancer with metal-on-metal hip replacements: population based study. BMJ : British Medical Journal. 2012;345.

Vahey JW, Simonian PT, Conrad 3rd EU. Carcinogenicity and metallic implants. Am J Orthop (Belle Mead NJ). 1995 Apr;24(4):319-24.

Sugimura T, Terada M, Yokota J, Hirohashi S, Wakabayashi K. Multiple genetic alterations in human carcinogenesis. Environ Health Perspect. 1992 Nov;98:5-12.

Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med. 2002 Nov 14;347(20):1593-603.

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011 Mar 4;144(5):646-74.

Yao Y, Dai W. Genomic Instability and Cancer. J Carcinog

Mutagen [Internet]. 2014 [cited 2017 Dec 20];5. Available from:

Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D,Darnell J. Proto-Oncogenes and Tumor-Suppressor Genes.2000 [cited 2018 Apr 3]; Available from:

Pierotti MA, Sozzi G, Croce CM. Mechanisms of oncogene activation. 2003 [cited 2018 Apr 3]; Available from:

Sadikovic B, Al-Romaih K, Squire J., Zielenska M. Cause and Consequences of Genetic and Epigenetic Alterations in Human Cancer. Curr Genomics. 2008 Sep;9(6):394-408.

Zheng J. Oncogenic chromosomal translocations and human cancer (Review). Oncology Reports. 2013 Nov 1;30(5):2011-9.

Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, DeCarolis PL, et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy.Nature Genetics. 2010 Aug;42(8):715-21.

Szymanska J, Serra M, Skytting B, Larsson O, Virolainen M, Åkerman M, et al. Genetic imbalances in 67 synovial sarcomas evaluated by comparative genomic hybridization.Genes, Chromosomes and Cancer. 1998 Nov 1;23(3):213-9.

Pratap J, Lian JB, Stein GS. Metastatic Bone Disease: Role of Transcription Factors and Future Targets. Bone. 2011 Jan 1;48(1):30-6.

Ladon D, Doherty A, Newson R, Turner J, Bhamra M,Case CP. Changes in metal levels and chromosome aberrations in the peripheral blood of patients after metal-on-metal hip arthroplasty. The Journal of Arthroplasty. 2004 Dec 1;19(8, Supplement):78-83.

Bonassi S, Hagmar L, Strömberg U, Montagud AH, Tinnerberg H, Forni A, et al. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. European Study Group on Cytogenetic Biomarkers and Health. Cancer Res. 2000 Mar 15;60(6):1619-25.

Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007 May;61(5 Pt 2):24R-29R.

Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009 Apr 1;23(7):781-3.

Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science. 2017 Jul 21;357(6348).

Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010 Jan;31(1):27-36.

Lu X, Miousse IR, Pirela SV, Melnyk S, Koturbash I,Demokritou P. Short-term exposure to engineered nanomaterials affects cellular epigenome. Nanotoxicology.2016;10(2):140-50.

Brown TA, Lee JW, Holian A, Porter V, Fredriksen H, Kim M, et al. Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after MWCNT exposure. Nanotoxicology.2016;10(4):453-61.

Li J, Tian M, Cui L, Dwyer J, Fullwood NJ, Shen H, et al.Low-dose carbon-based nanoparticle-induced effects in A549 lung cells determined by biospectroscopy are associated with increases in genomic methylation. Sci Rep [Internet]. 2016 Feb 2 [cited 2018 Jan 23];6. Available from:

Ha S-W, Jang HL, Nam KT, Beck GR. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials. 2015 Oct;65:32-42.

Zhai Y, Tyagi SC, Tyagi N. Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone

diseases. Biomed Pharmacother. 2017 Aug;92:1073-84.

Gong C, Tao G, Yang L, Liu J, Liu Q, Li W, et al. Methylation of PARP-1 promoter involved in the regulation of nano-SiO2-induced decrease of PARP-1 mRNA expression.

Toxicol Lett. 2012 Mar 25;209(3):264-9.

Choi AO, Brown SE, Szyf M, Maysinger D. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med. 2008 Mar;86(3):291-302.

Halappanavar S, Jackson P, Williams A, Jensen KA,Hougaard KS, Vogel U, et al. Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades,and changes in microRNAs: a toxicogenomic study. Environ Mol Mutagen. 2011 Jul;52(6):425-39.

Li S, Wang H, Qi Y, Tu J, Bai Y, Tian T, et al. Assessment of nanomaterial cytotoxicity with SOLiD sequencing-based microRNA expression profiling. Biomaterials. 2011 Dec 1;32(34):9021-30.

Li S, Wang Y, Wang H, Bai Y, Liang G, Wang Y, et al.MicroRNAs as participants in cytotoxicity of CdTe quantum dots in NIH/3T3 cells. Biomaterials. 2011 May;32(15):3807-14.

Hebert A, Bishop M, Bhattacharyya D, Gleason K, Torosian S. Assessment by Ames test and comet assay of toxicity potential of polymer used to develop field-capable

rapid-detection device to analyze environmental samples.Appl Nanosci. 2015;5:763-9.

Szycher M, Sharma CP. Blood Compatible Materials and Devices: Perspectives Towards the 21st Century. CRC Press; 1990. 326 p.

Ma T, Pajarinen J, Lin TH, Goodman SB. 7.6 Biological Effects of Wear Debris From Joint Arthroplasties☆. In:Ducheyne P, editor. Comprehensive Biomaterials II [Internet]. Oxford: Elsevier; 2017 [cited 2018 Jan 22]. p. 92-105.Available from:


Wang Q, Eltit F, Wang R. Corrosion of Orthopedic Implants. In: Reference Module in Biomedical Sciences [Internet]. Elsevier; 2017 [cited 2018 Jan 22]. Available


Cohen D. Hip implants: how safe is metal on metal? MEDICAL DEVICES. 2012;344:7.

Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg Am. 2001 Mar;83-A(3):428-36.

Drummond J, Tran P, Fary C. Metal-on-Metal Hip Arthroplasty: A Review of Adverse Reactions and Patient Management. J Funct Biomater. 2015 Jun 26;6(3):486-99.

Khan MA, Williams RL, Williams DF. Conjoint corrosion and wear in titanium alloys. Biomaterials. 1999 Apr;20(8):765-72.

Anderson JM, McNally AK. Biocompatibility of implants:lymphocyte/macrophage interactions. Semin Immunopathol. 2011 May;33(3):221-33.

Johnston RB. Current concepts: immunology. Monocytes and macrophages. N Engl J Med. 1988 Mar 24;318(12):747-52.

Lucke S, Hoene A, Walschus U, Kob A, Pissarek J-W,Schlosser M. Acute and Chronic Local Inflammatory Reaction after Implantation of Different Extracellular Porcine

Dermis Collagen Matrices in Rats. Biomed Res Int [Internet]. 2015 [cited 2017 Dec 18];2015. Available from:

Robbins SL, Kumar V, Cotran RS. Robbins basic pathology [Internet]. 7th ed., updated. Philadelphia, Pa. : Saunders;2003 [cited 2017 Dec 18]. Available from: https://trove.nla.

Hussain SP, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007 Dec 1;121(11):2373-80.

Kawanishi S, Hiraku Y. Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxid Redox Signal. 2006 Jun;8(5–


Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression,epigenetic pathways and DNA damage/repair. Redox Biol.


Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 2016 Apr 1;6(2):71-9.

Van Tienhoven E a. E, Korbee D, Schipper L, Verharen HW, De Jong WH. In vitro and in vivo (cyto)toxicity assays using PVC and LDPE as model materials. J Biomed Mater Res A. 2006 Jul;78(1):175-82.

Al-Maawi S, Orlowska A, Sader R, James Kirkpatrick C, Ghanaati S. In vivo cellular reactions to different biomaterials—Physiological and pathological aspects and their consequences. Seminars in Immunology. 2017 Feb 1;29(Supplement C):49-61.

Wallin G, Lundell G, Tennvall J. Anaplastic giant cell thyroid carcinoma. Scand J Surg. 2004;93(4):272-7.

Tabish AM, Poels K, Byun H-M, luyts K, Baccarelli AA,Martens J, et al. Changes in DNA Methylation in Mouse Lungs after a Single Intra-Tracheal Administration of Nanomaterials. PLoS ONE. 2017 Jan 12;12(1):1-17.



  • There are currently no refbacks.

Copyright (c) 2019 Asma Amleh

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.