Polydopamine Modified Biomimetic Gold Nanoparticles for Dual Photothermal Therapy

Zhiming Su, Hem Sagar Rim

Abstract


Our study producted Polydopamine modified gold nanoflowers with controlled morphology for anti-tumor photothermal therapy. The branch structure containsabundant(Au NFs). By adjusting the reduction rate, the dosage of reducing agent (sodium borohydride) and the reduction temperature,we can adjust tthe morphology and particle size of Au NFs .We found that the lower reaction temperature is, the more abundant the surface branching structure of gold nanoflowers is, by adjusting the reaction temperature. and the largest specific surface area of golden nanopowder was found at 0 ℃. The results of TEM indicated that with the increase of sodium borohydride, the diameter of gold nanoflowersgold nanoflowers decreased and was in the range of 60~100nm, and it has good EPR effect After that, we modify poly (dopamine) (PDA) biomimetic layer on the surface of golden nanoparticles to obtain Au NFS@PDA. Poly (dopamine) has the ability, of photothermal conversion, which can enhance the plasma resonance ability and biocompatibility of gold nanoflowers in the near infrared region.We can control the thickness of polydopamine layer on the surface of gold nanoflowers between 7~15nm by adjusting dopamine DA concentrationgold nanoflowers. Au NFS@PDA was characterized by its morphology and physical properties. We detect (UV-Vis)spectra in the near infrared region .And it showed obvious absorption peaks in the near infrared region of 575~650nm. Under the 808nm irradiation laser, the photothermal conversion of gold nanoflowers and polydopamine can be rapidly increased to 57°C. Fourier Transform Infrared Absorption Spectroscopy (FTIR) and X-ray Diffraction (XRD) analysis showed that polydopamine was modified successfully, Au NFS@PDA and Au NFs had no obvious difference in crystal form. The cell viability test showed that the bionic Au NFS@PDA had good biocompatibility and showed good antitumor activity against HeLa cells under NIR irradiation. The cell viability was only 12%. Therefore, We can use Au NFS@PDA with good biocompatibility as a promising photothermal conversion agent in tumor therapy.


Keywords


gold nanoflowers; Polydopamine; Template-free method; Controllable; Photothermal therapy

Full Text:

PDF

References


Jia W. F.,Li J. R.,Lin G. H.,Jiang L.,Cryst. Growth. Des.,2011,11( 9) : 3822—3827

Li S. N.,Zhang L. Y.,Wang T. T.,Li L.,Su Z. M.,Chem. Commun.,2015,51( 76) :14338—14341

Wang C. R.,Yan X. Z.,Yu Y. F.,Mater. Res. Innov.,2014,18( Sup2) :585—590

Ong X. Y.,Chen S.,Nabavi E.,Regoutz A.,Payne D. J.,Elson D. S.,Dexter,D. T.,Dunlnop I. E.,Porter A. E.,ACS. Appl. Mater.

Inter.,2017,9( 45): 39259—39270

Zhong L.,Zhai X. D.,Zhu X F.,Yao P. P.,Liu M. H.,Langmuir,2010,26( 8) :5876—5881

Feng J. J.,Chen S. S.,Chen X. L.,Zhang X. F.,Wang A. J. J.,Colloid Interf. Sci.,2017,509:73—81

Wang A. J.,Qin S. F.,Zhou D. L.,Cai L. Y.,Chen J. R.,Feng J. J.,Rsc. Adv.,2013,3( 34) :14766—14773

Jian Y. Y.,Deng Z. J.,Yang D.,Deng X.,Li Q.,Sha Y. L.,Li C. H.,Xu D. S.,Nano Res.,2015,8( 7):2152—2161

Barbosa S.,Agrawal A.,Rodríguez-Lorenzo L.,Alvarez-Puebla R. A.,Komowski A.,Weller H.,Liz-Marzan L. M.,Langmuir,2010,

( 18) :14943—14950

Han J.,Li J. R.,Jia W. F.,Yao L. M.,Li X. Q.,Jiang L.,Tian Y.,Int. J. Nanomed.,2014,9: 517—526

Kumari S.,Singh R. P.,Int. J. Biol. Macromol.,2012,50( 3):878—883

Zhao L.,Sun X.,Ji X.,Li J.,Yang W.,Peng X.,J. Phys. Chem. C,2009,113:16645—16651

Mao K.,Chen Y.,Wu Z.,Zhou X.,Shen A.,Hu J.,J. Agric. Food Chem.,2014,62:10638—10645

Zhao X. M.,Qi T. Y.,Kong H. F.,Hao M.,Wang Y. Q.,Li J.,Liu B. C.,Gao Y. Y.,Jiang J. L.,Int. J. Nanomed.,2018,13: 6413—6428

Liu Z. G.,Qu S. X.,Wen J.,Prog. Chem.,2015,27( 2/3) :212—219

Liu Y. W.,Guo Z.,Chem. J.,Chinese Universities,2015,36( 7) :1389—1394

Khlebtsov B. N.,Burov A. M.,Khlebtsov N. G.,Appl. Mater. Today,2019,15:67—76

Jiang Y. Y.,Wu X. J.,Li Q.,Li J. J.,Xu D. S.,Nanotechnology,2011,22( 38) :385601

Luo Y. S.,Ji X. H.,Zhuang J. Q.,Yang W. S.,Colloid Surface A,2014,463:28—36

de Vries W. C.,Niehues M.,Wissing M.,Wurthwein T.,Masing F.,Fallnich C.,Studer A.,Ravoo J. J.,Nanoscale,2019,11( 19) : 9384—9391

Garrido C.,Wsiss-Lopez B. E.,Vallette M. M. C.,Spectrosc. Lett.,2016,49( 1):11—18

Chen W. F.,Qin M.,Chen X. Y.,Wang Q.,Zhang Z. R.,Sun X.,Theranostics,2018,8( 8):2229—2241

Poinard B.,Neo S. Z. Y.,Yeo E. L. L.,Heng H. P. S.,Neoh K. G.,Kah J. C. Y.,ACS Appl. Mater. Inter.,2018,10( 25):21125—21136

Fu J. W.,Chen Z. H.,Wang M. H.,Liu S. J.,Zhang J. H.,Zhang J. N.,Han R. P.,Xu Q.,Chem. Eng. J.,2015,259:53—61




DOI: http://dx.doi.org/10.30564/amor.v5i1.223

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Zhiming Su, Hem Sagar Rim

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.