Open Journal Systems

Threshold-based parametric analysis of diffusion-weighted magnetic resonance imaging at 3.0 Tesla to identify men with prostate cancer

Diarmaid C Moran ()
Laure Marignol ()
Andrew J Fagan ()
Ruth Dunne ()
Antoinette S Perry ()
Dearbhail O'Driscoll ()
Eoin Gaffney ()
Thomas H Lynch ()
James F M Meaney ()
Donal H Hollywood ()

Abstract


The aim of this study is to determine the accuracy of three apparent diffusion coefficient (ADC) threshold values in detecting prostate cancer (PCa) prior to prostate biopsy. 60 men with clinical suspicion of PCa underwent endorectal diffusion-weighted magnetic resonance imaging (DW-MRI) at 3.0 Tesla (T). Three ADC threshold values (tADC: 1.0, 1.2 and 1.4 × 10-3 mm2/s) were sequentially applied to ADC maps for the detection of malignant lesions in the prostatic peripheral zone (PZ). Segment-based and patient-specific PCa detection performance of these tADC values was correlated with the histopathological results from the subsequent 12-core transrectal ultrasound (TRUS)-guided biopsy. Mean of ADC and area size of the identified malignant region of interests (ROIs) were recorded. Accuracy for PCa detection was assessed by receiver operating characteristic curves. 1.0 × 10-3 mm2/s of tADC provided 79% sensitivity, 97% specificity and 93% positive predictive value for PCa. Area size of the malignant ROI was a good independent factor for PCa detection (AUC = 0.85). ROI area size 0.2 cm2 was identified as the best performing cut-off values for the detection of PCa. Refined detection criteria combining area size ≤0.2 cm2 and ADC <1.0 × 10-3 mm2/s increased the detection performance. In conclusion, threshold-based parametric evaluation of DW-MRI at 3.0 T can detect PZ PCa accurately prior to biopsy.

Keywords


diffusion-weighted magnetic resonance imaging (DW-MRI); prostatic neoplasm; early detection of cancer; receiver operating characteristic (ROC) curve; histology

Full Text:

PDF

References


Wolf A, Wender RC, Etzioni RB, et al. American Cancer Society guideline for the early detection of prostate cancer: update 2010. CA Cancer J Clin 2010; 60(2): 70–98. doi: 10.3322/caac.20066

Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol 2014; 65(1): 124–137. doi: 10.1016/j.eururo.2013.09.046

Catalona WJ, Richie JP, deKernion JB, et al. Comparison of prostate specific antigen concentration versus prostate specific antigen density in the early detection of prostate cancer: receiver operating characteristic curves. J Urol 1994; 152(6 Pt 1): 2031–2036.

Roemeling S, Roobol MJ, Kattan MW, et al. Nomogram use for the prediction of indolent prostate cancer. Cancer 2007; 110(10): 2218–2221. doi: 10.1002/cncr.23029

Dickinson L, Ahmed HU, Allen C, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol 2011; 59(4): 477–494. doi: 10.1016/j.eururo.2010.12.009

Sciarra A, Barentsz J, Bjartell A, et al. Advances in magnetic resonance imaging: how they are changing the management of prostate cancer. Eur Urol 2011; 59(6): 962–977. doi: 10.1016/j.eururo.2011.02.034

Choi MS, Choi YS, Yoon BI, et al. The clinical value of performing an MRI before prostate biopsy. Korean J Urol 2011; 52(8): 572–577. doi: 10.4111/kju.2011.52.8.572

Cornfeld DM, Weinreb JC. MR imaging of the prostate: 1.5T versus 3T. Magn Reson Imaging Clin N Am 2007; 15(3): 433–448. doi: 10.1016/j.mric.2007.06.004

Kim JH, Kim JK, Park BW, et al. Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region. J Magn Reson Imaging 2008; 28(5): 1173–1179. doi: 10.1002/jmri.21513

Morgan VA, Kyriazi S, Ashley SE, et al. Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection. Acta Radiol 2007; 48(6): 695–703. doi: 10.1080/02841850701349257

Kim CK, Park BK, Han JJ, et al. Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 2007; 31(3): 449–454. doi: 10.1097/01.rct.0000243456.00437.59

Kim CK, Park BK, Kim B. High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: comparisons between b values of 1,000 and 2,000 s/mm2. AJR Am J Roentgenol 2010; 194(1): 33–37. doi: 10.2214/AJR.09.3004

Sato C, Naganawa S, Nakamura T, et al. Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate. J Magn Reson Imaging 2005; 21(3): 258–262. doi: 10.1002/jmri.20251

Tamada T, Sone T, Jo Y, et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging 2008; 28(3): 720–726. doi: 10.1002/jmri.21503

Kumar V, Jagannathan NR, Kumar R, et al. Apparent diffusion coefficient of the prostate in men prior to biopsy: determination of a cut-off value to predict malignancy of the peripheral zone. NMR Biomed 2007; 20(5): 505–511. doi: 10.1002/nbm.1114

deSouza NM, Reinsberg SA, Scurr ED, et al. Magnetic resonance imaging in prostate cancer: the value of apparent diffusion coefficients for identifying malignant nodules. Br J Radiol 2007; 80(950): 90–95. doi: 10.1259/bjr/24232319

Mazaheri Y, Hricak H, Fine SW, et al. Prostate tumor volume measurement with combined T2-weighted imaging and diffusion-weighted MR: correlation with pathologic tumor volume. Radiology 2009; 252(2): 449–457. doi: 10.1148/radiol.2523081423

Van der Kwast T, Bubendorf L, Mazerolles C, et al. Guidelines on processing and reporting of prostate biopsies: the 2013 update of the pathology committee of the European Randomized Study of Screening for Prostate Cancer (ERSPC). Virchows Arch 2013; 463(3): 367–377. doi: 10.1007/s00428-013-1466-5

Thompson JE, Moses D, Shnier R, et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. J Urol 2014; 192(1): 67–74. doi: 10.1016/j.juro.2014.01.014

Pokorny MR, de Rooij M, Duncan E, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol 2014; 66(1): 22–29. doi: 10.1016/j.eururo.2014.03.002

Overduin CG, Futterer JJ, Barentsz JO. MRI-guided biopsy for prostate cancer detection: a systematic review of current clinical results. Curr Urol Rep 2013; 14(3): 209–213. doi: 10.1007/s11934-013-0323-z

Park BH, Jeon HG, Choo SH, et al. Role of multipara-metric 3.0-Tesla magnetic resonance imaging in patients with prostate cancer eligible for active surveillance. BJU Int 2014; 113(6): 864–870. doi: 10.1111/bju.12423

Nishida S, Kinoshita H, Mishima T, et al. Prostate cancer detection by prebiopsy 3.0-Tesla magnetic resonance imaging. Int J Urol 2011; 18(9): 653–658. doi: 10.1111/j.1442-2042.2011.02814.x

Turkbey B, Pinto PA, Mani H, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology 2010; 255(1): 89–99. doi: 10.1148/radiol.09090475

Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, et al. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol 2012; 61(1): 177–184. doi: 10.1016/j.eururo.2011.08.042

Verma S, Rajesh A, Morales H, et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol 2011; 196(2): 374–381. doi: 10.2214/AJR.10.4441

Liu X, Peng W, Zhou L, et al. Biexponential apparent diffusion coefficients values in the prostate: comparison among normal tissue, prostate cancer, benign prostatic hyperplasia and prostatitis. Korean J Radiol 2013; 14(2): 222–232. doi: 10.3348/kjr.2013.14.2.222

Lee DH, Koo KC, Lee SH, et al. Tumor lesion diameter on diffusion weighted magnetic resonance imaging could help predict insignificant prostate cancer in patients eligible for active surveillance: preliminary analysis. J Urol 2013; 190(4): 1213–1217. doi: 10.1016/j.juro.2013.03.127

Morgan V, Kyriazi S, Ashley S, et al. Evaluation of the potential of diffusion-weighted imaging in prostate cancer detection. Acta Radiol 2007; 48(6): 695–703. doi: 10.1080/02841850701349257

Corcoran NM, Hong MK, Casey RG, et al. Upgrade in Gleason score between prostate biopsies and pathology following radical prostatectomy significantly impacts upon the risk of biochemical recurrence. BJU International 2011; 108(8b): 202–210. doi: 10.1111/j.1464-410X.2011.10119.x

Kim CK, Park BK, Kim B. Diffusion-weighted MRI at 3 T for the evaluation of prostate cancer. AJR Am J Roentgenol 2010; 194(6): 1461–1469. doi: 10.2214/AJR.09.3654

Koo JH, Kim CK, Choi D, et al. Diffusion-weighted magnetic resonance imaging for the evaluation of prostate cancer: optimal b value at 3T. Korean J Radiol 2013; 14(1): 61–69. doi: 10.3348/kjr.2013.14.1.61



DOI: http://dx.doi.org/10.30564/amor.v1i2.23

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Diarmaid C Moran, Laure Marignol, Andrew J Fagan, Ruth Dunne, Antoinette S Perry, Dearbhail O'Driscoll, Eoin Gaffney, Thomas H Lynch, James F M Meaney, Donal H Hollywood

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.