Synthesis of Nano-grapheneoxide for Anti-tumor Photothermal Therapy and Immunogenic Death

Deep Fernandes, Kamini Yadav

Abstract


纳米氧化烯(NGO)是一种良好的光热转化剂,在808nm处具有很强的吸收性和良好的光热转化效率。这项研究调查了NGO在近红外(NIR)光的刺激下介电导的光热抗肿瘤作用和免疫原性死亡。细胞活力实验证实,非政府组织具有良好的光热转化作用,可以有效杀死肿瘤细胞。此外,NGO可以刺激巨噬细胞上调白介素6(IL-6)和肿瘤坏死因子(TNF-α)的表达,从而增强抗原呈递递归以触发免疫原性死亡。模拟了局部原发性肿瘤和转移性肿瘤的实验。结果显示,NGO介导的光热疗法可有效消融局部肿瘤,免疫原性死亡明显降低了远处肿瘤的生长速度,提示基于NGO的光热疗法可能会诱发抗肿瘤免疫反应。增强的免疫系统将在原位局部杀死肿瘤,从而达到抑制远处肿瘤生长的效果。


Keywords


Nano-grapheneoxide, Photothermal Therapy, Immunogenic Death

Full Text:

PDF

References


Torre L A, Bray F, Siegel R L, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015, 65(2): 87-108

Fidler I J, Kripke M L. The challenge of targeting metastasis. Cancer Metastasis Rev, 2015, 34(4): 635-641

Chen W R, Adams R L, Bartels K E, et al. Chromophore-enhanced in vivo tumor cell destruction using an 808-nm diode laser. Cancer Lett, 1995, 94(2): 125-131

Chen W R, Adams R L, Higgins A K, et al. Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study. Cancer Lett, 1996, 98 (2): 169-173

Geim A K, Novoselov K S. The rise of graphene. Nat Mater, 2007, 6(3): 183-191

Bitounis D, Ali-Boucetta H, Hong B H, et al. Prospects and challenges of graphene in biomedical applications. Adv Mater, 2013, 25(16): 2258-2268

Zhou X, Liang F. Application of graphene/graphene oxide in biomedicine and biotechnology. Curr Med Chem, 2014, 21 (7): 855-869

Yang K, Zhang S, Zhang G, et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett, 2010, 10(9): 3318-3323

Luo N, Weber J K, Wang S, et al. PEGylated graphene oxide elicits strong immunological responses despite surface passivation. Nat Commun, 2017, 24(8): 14537-14547

Takemoto M, Kuroda M, Urano M, et al. The effect of various chemotherapeutic agents given with mild hyperthermia on different types of tumours. Int J Hyperthermia, 2003, 19(2): 193-203

Wen Q L, He L J, Ren P R, et al. Comparing radiotherapy with or without intracavitary hyperthermia in the treatment of primary nasopharyngeal carcinoma: a retrospective analysis. Tumori, 2014, 100(1): 49-54

Hainfeld J F, Lin L, Slatkin D N, et al. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomedicine, 2014, 10(8): 1609-1617

Zhou F, Li X, Naylor M F, et al. InCVAX——a novel strategy for treatment of late-stage, metastatic cancers through photoimmunotherapy induced tumor-specific immunity. Cancer Lett, 2015, 359(2): 169-17

Chen W R, Liu H, Ritchey J W, et al. Effect of different components of laser immunotherapy in treatment of metastatic tumors in rats. Cancer Res, 2002, 62(15): 4295-4299

Yeung H Y, Lo P C, Ng D K, et al. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol, 2017, 14(2): 223-234

Kalluru P, Vankayala R, Chiang C S, et al. Nano-graphene oxide- mediated In vivo fluorescence imaging and bimodal photodynamic and photothermal destruction of tumors. Biomaterials, 2016, 95(16): 1-10

Yang K, Gong H, Shi X, et al. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials, 2013, 34 (11): 2787-2795

De Santis M, Locati M, Selmi C. The elegance of a macrophage. Cell Mol Immunol, 2017 [Epub ahead of print] (DOI: 10.1038/cmi. 2017.64)

Cheng X L, Ding F, Li H, et al. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages. Biochem Biophys Res Commun, 2015, 461(2): 275-280

Lu C L, Zhu W, Wang D M, et al. Inhibitory effects of chemical compounds isolated from the rhizome of smilax glabra on nitric oxide and tumor necrosis factor-α production in lipopolysaccharide-induced RAW264.7 cell. Evid Based Complement Alternat Med, 2015, 2015: 602425

Tripsianis G, Papadopoulou E, Anagnostopoulos K, et al. Coexpression of IL-6 and TNF-α: prognostic significance on breast cancer outcome. Neoplasma, 2014, 61(2): 205-212

De Simone V, Franzè E, Ronchetti G, et al. Th17-type cytokines, IL-6 and TNF-α synergistically activate STAT3 and NF-κB to promote colorectal cancer cell growth. Oncogene, 2015, 34 (27): 3493-3503

Feito M J, Vila M, Matesanz M C, et al. In vitro evaluation of graphene oxide nanosheets on immune function. J Colloid Interface Sci, 2014, 432(15): 221-228

Chen X M, Song E W. The role of tumor microenvironment in cancer immunotherapy. Prog Biochem Biophys, 2017, 44 (8): 641- 648

Chen Y F, Hong J, Shen J J, et al. Progress on clinical immunotherapy of malignant tumor. Prog Biochem Biophys, 2017, 44(8): 709-716




DOI: http://dx.doi.org/10.30564/amor.v5i2.234

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Fernandes Deep

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.