Open Journal Systems

Fe3O4-based Nanoparticles for pH-responsive Dual-modality Imaging and Photothermal Therapy

Jiang Gu (Department of Pathology, School of Basic Medical Science, Tokyo Medical University, Japan)
Li Fu (University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FI, USA)
Qianz Dong (Department of Pathology, School of Basic Medical Science, Tokyo Medical University, Japan;University of Central Florida College of Medicine, Burnett School of Biomedical Sciences, Orlando, FI, USA)


The study designed a polyacrylic acid (PAA) modified Fe3O4@MnO2 nanoparticles (Fe3O4@MnO2@PAA) for T1/T2 dual-mode imaging. In addition, this nano-drug has pH response and anti-tumor photothermal therapy. First, using Fe3O4 as the core can significantly reduce the signal of Fe3O4@MnO2@PAA nanoparticles. MnO2 nanoshells can be decomposed into paramagnetic Mn2+ under the acidic environment in the tumor, which enhanced the T1 signal. The pH-responsive T1/T2 dual-mode magnetic resonance imaging (MRI) contrast agent had good sensitivity and specificity, providing more comprehensive and detailed information for tumor diagnosis. In addition, Fe3O4@MnO2@PAA nanoparticles showed excellent absorption capacity in the near-infrared region (NIR), which could be used as a good photothermal conversion material to mediate photothermal treatment of tumors. Therefore, the pH-responsive dual-mode MRI nanoparticle-mediated photothermal therapy showed good application potential in tumor treatment and diagnosis.


Magnetic resonance imaging; Diagnostic and therapeutic agents; Dual-mode imaging; Photothermal therapy

Full Text:



Jin X, Fang F, Liu J, Jiang C, Han X, Song Z, Chen J, Sun G, Lei H, Lu L. Nanoscale, 2015, 7(38): 15680-15688

Burstein D, Velyvis J, Scott K T, Stock K W, Kim Y J, Jaramillo D, Boutin R D, Gray M L. Magn. Reson. Med. , 2001, 45(1): 36-41

WangS, LinJ, WangZ, ZhouZ, BaiR, LuN, LiuY, FuX, JacobsonO, FanW, QuJ, ChenS, WangT,HuangP, Chen X. Adv. Mater. , 2017, 29(35): 1701013

Farnsworth R H, Lackmann M, Achen M G, Stacker S A. Oncogene, 2014, 33(27): 3496-505

Kim R, Fieno D, Parrish T, Harris K, Chen E, Simonetti O, Bundy J, Finn J, Klocke F, Judd R. Circulation, 1999, 100(19): 1992-2002

Leutz-Schmidt P, Stahl M, Sommerburg O, Eichinger M, Puderbach M, Schenk J, Alrajab A, Triphan S, Kauczor H, Mall M, Wielputz M. Eur. J. Radiol. , 2018, 101: 178-183

LiuX, JiangF, WangZ, LiX, LiZ, ZhangX, ChenF, MaoJ, ZhouL, GuiJ. Sci. Rep.,2017,7(1):5395

Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J, Wang L. Adv. Mater. , 2014, 26(41): 7019

Jin L, Liu J, Tang Y, Cao L, Zhang T, Yuan Q, Wang Y, Zhang H. ACS Appl. Mater. Interfaces, 2017, 9(48): 41648-41658

WangD, ZhouJ, ShiR, WuH, ChenR, DuanB, XiaG, XuP, WangH, ZhouS, WangC, WangH, GuoZ, ChenQ. Theranostics, 2017, 7(18): 4605-4617

Mai B, Fernandes S, Balakrishnan P, Pellegrino T. Acc. Chem. Res. , 2018, 51(5): 999-1013

Yang G, Zhang R, Liang C, Zhao H, Yi X, Shen S, Yang K, Cheng L, Liu Z. Small, 2018, 14(2): 1702664

Wang Y, Song S, Liu J, Liu D, Zhang H. Angew. Chem. Int. Edit. , 2015, 127(2): 546-550

Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z. Adv. Mater. , 2016, 28(33): 7129-7136

Ding X, Liu J, Li J, Wang F, Wang Y, Song S, Zhang H. Chem. Sci. , 2016, 7(11): 6695

Liu J, Jin L, Wang Y, Ding X, Zhang S T, Song S, Wang D, Zhang H. Small, 2018, 14(7): 1702431

Zhou Z, Bai R, Munasinghe J, Shen Z, Nie L, Chen X. ACS Nano, 2017, 11(6): 5227-5232.

Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J. Adv. Funct. Mater. , 2010, 20(7): 1166-1172

Zhang L, Lian J, Wu L, Duan Z, Jiang J, Zhao L. Langmuir, 2014, 30(23): 7006-7013

Yi X, Chen L, Zhong X, Gao R, Qian Y, Wu F, Song G, Chai Z, Liu Z, Yang K. Nano Res. , 2016, 9(11): 3267-3278

Zhai Y, Zhai J, Zhou M, Dong S. J. Mater. Chem. , 2009, 19(38): 7030-7035



  • There are currently no refbacks.

Copyright (c) 2020 Jiang Gu, Li Fu, Qianz Dong

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.