Fe3O4-based Nanoparticles for pH-responsive Dual-modality Imaging and Photothermal Therapy

Jiang Gu, Li Fu, Qianz Dong


The study designed a polyacrylic acid (PAA) modified Fe3O4@MnO2 nanoparticles (Fe3O4@MnO2@PAA) for T1/T2 dual-mode imaging. In addition, this nano-drug has pH response and anti-tumor photothermal therapy. First, using Fe3O4 as the core can significantly reduce the signal of Fe3O4@MnO2@PAA nanoparticles. MnO2 nanoshells can be decomposed into paramagnetic Mn2+ under the acidic environment in the tumor, which enhanced the T1 signal. The pH-responsive T1/T2 dual-mode magnetic resonance imaging (MRI) contrast agent had good sensitivity and specificity, providing more comprehensive and detailed information for tumor diagnosis. In addition, Fe3O4@MnO2@PAA nanoparticles showed excellent absorption capacity in the near-infrared region (NIR), which could be used as a good photothermal conversion material to mediate photothermal treatment of tumors. Therefore, the pH-responsive dual-mode MRI nanoparticle-mediated photothermal therapy showed good application potential in tumor treatment and diagnosis.


magnetic resonance imaging; diagnostic and therapeutic agents; dual-mode imaging; photothermal therapy

Full Text:



Jin X, Fang F, Liu J, Jiang C, Han X, Song Z, Chen J, Sun G, Lei H, Lu L. Nanoscale, 2015, 7(38): 15680-15688

Burstein D, Velyvis J, Scott K T, Stock K W, Kim Y J, Jaramillo D, Boutin R D, Gray M L. Magn. Reson. Med. , 2001, 45(1): 36-41

WangS, LinJ, WangZ, ZhouZ, BaiR, LuN, LiuY, FuX, JacobsonO, FanW, QuJ, ChenS, WangT,HuangP, Chen X. Adv. Mater. , 2017, 29(35): 1701013

Farnsworth R H, Lackmann M, Achen M G, Stacker S A. Oncogene, 2014, 33(27): 3496-505

Kim R, Fieno D, Parrish T, Harris K, Chen E, Simonetti O, Bundy J, Finn J, Klocke F, Judd R. Circulation, 1999, 100(19): 1992-2002

Leutz-Schmidt P, Stahl M, Sommerburg O, Eichinger M, Puderbach M, Schenk J, Alrajab A, Triphan S, Kauczor H, Mall M, Wielputz M. Eur. J. Radiol. , 2018, 101: 178-183

LiuX, JiangF, WangZ, LiX, LiZ, ZhangX, ChenF, MaoJ, ZhouL, GuiJ. Sci. Rep.,2017,7(1):5395

Chen Y, Ye D, Wu M, Chen H, Zhang L, Shi J, Wang L. Adv. Mater. , 2014, 26(41): 7019

Jin L, Liu J, Tang Y, Cao L, Zhang T, Yuan Q, Wang Y, Zhang H. ACS Appl. Mater. Interfaces, 2017, 9(48): 41648-41658

WangD, ZhouJ, ShiR, WuH, ChenR, DuanB, XiaG, XuP, WangH, ZhouS, WangC, WangH, GuoZ, ChenQ. Theranostics, 2017, 7(18): 4605-4617

Mai B, Fernandes S, Balakrishnan P, Pellegrino T. Acc. Chem. Res. , 2018, 51(5): 999-1013

Yang G, Zhang R, Liang C, Zhao H, Yi X, Shen S, Yang K, Cheng L, Liu Z. Small, 2018, 14(2): 1702664

Wang Y, Song S, Liu J, Liu D, Zhang H. Angew. Chem. Int. Edit. , 2015, 127(2): 546-550

Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z. Adv. Mater. , 2016, 28(33): 7129-7136

Ding X, Liu J, Li J, Wang F, Wang Y, Song S, Zhang H. Chem. Sci. , 2016, 7(11): 6695

Liu J, Jin L, Wang Y, Ding X, Zhang S T, Song S, Wang D, Zhang H. Small, 2018, 14(7): 1702431

Zhou Z, Bai R, Munasinghe J, Shen Z, Nie L, Chen X. ACS Nano, 2017, 11(6): 5227-5232.

Gai S, Yang P, Li C, Wang W, Dai Y, Niu N, Lin J. Adv. Funct. Mater. , 2010, 20(7): 1166-1172

Zhang L, Lian J, Wu L, Duan Z, Jiang J, Zhao L. Langmuir, 2014, 30(23): 7006-7013

Yi X, Chen L, Zhong X, Gao R, Qian Y, Wu F, Song G, Chai Z, Liu Z, Yang K. Nano Res. , 2016, 9(11): 3267-3278

Zhai Y, Zhai J, Zhou M, Dong S. J. Mater. Chem. , 2009, 19(38): 7030-7035

DOI: http://dx.doi.org/10.30564/amor.v5i4.249


  • There are currently no refbacks.

Copyright (c) 2020 Jiang Gu, Li Fu, Qianz Dong

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.