Preparation of Graphene Nanocomposite with Targeting Function and Its Photothermal / Photodynamic Combined Therapy
Abstract
The study developed a mild method to prepare partially reduced graphene oxide (pRGO). Through the non-covalent interaction of pRGO with nucleic acid aptamers AS1411 and indocytinine green (ICG), photothermal and photosensitive nanocomposites pRGO-AS1411-ICG (pRAI) were constructed. The complex structure and morphological characteristics of pRGO and pRAI were used by fourier transform infrared spectroscopy (FTIR), raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (Uv-vis), and transmission electron microscope (TEM). And the effect of EDS phototherapeutic back heat therapy on tumor cells was carried out in cell experiments. The results showed that pRAI with targeting of AS1411 can effectively kill tumor cells through the dual effects of photothermal therapy (PTT) and photodynamic therapy (PDT).
Keywords
Full Text:
PDFReferences
Lucky S. S., Soo K. C., Zhang Y., Chem. Rev., 2015, 115, 1990-2042
Cai Y., Liang P. P., Tang Q. Y., Yang X. Y., Si W. L., Huang W., Zhang Q., Dong X. C., ACS Nano, 2017, 11, 1054—1063
Yang K., Wan J., Zhang S., Tian B., Zhang Y., Liu Z., Biomaterials, 2012, 33, 2206—2214
Wang Y. H., Deng H. H., Liu Y. H., Shi X. Q., Liu A. L., Peng H. P., Hong G. L., Chen W., Biosensors and Bioelectronics, 2016, 80, 140—145
Akiyama Y., Mori T., Katayama Y., Niidome T., J. Control Release, 2009, 139, 81—84
Chen R., Wang X, Yao X. K., Zheng X. C., Wang J., Jiang X. Q., Biomaterials, 2013, 34, 8314—8322
Shiao Y. S., Chiu H. H., Wu P. H., Huang Y. F., ACS Appl. Mater. Interfaces, 2014, 6, 21832—21841
Gonz. lez⁃Delgado José A., Kennedy P. J., Ferreira M., ToméJoao
Barth B. M., Altinoglu E. I., Shanmugavelandy S. S., Kaiser J. M., Crespo⁃Gonzalez D., DiVittore N. A., McGovern C., Goff T. M., Keasey N. R., Adair J. H., Loughran T. P. Jr., Claxton D. F., Kester M., ACS Nano, 2011, 5, 5325—5337
Yoon H. K., Ray A., Lee Y. E., Kim G., Wang X., Kopelman R., J. Mater. Chem., 2013, 1, 5611—5619
De la Zerda A., Zavaleta C., Keren S., Vaithilingam S., Bodapati S., Liu Z., Levi J., Smith B. R., Ma T. J., Oralkan O., Cheng Z., Chen X., Dai H., Khuri⁃Yakub B. T., Gambhir S. S., Nat. Nanotechnol., 2008, 3, 557—562
Huang Y. F., Chang H. T., Tan W., Anal. Chem., 2008, 80, 567—572
Tang Z., Zhu Z., Mallikaratchy P., Yang R., Sefah K., Tan W., Chem. Asian J., 2010, 5, 783—786
Shieh Y. A., Yang S. J., Wei M. F., Shieh M. J., ACS Nano, 2010, 4, 1433—1442
Liu J. B., Li Y. L., Li Y. M., Li J. H., Deng Z. X., J. Mater. Chem., 2010, 20, 900—906
Lin Z. Y., Yao Y. G., Li Z., Liu Y., Li Z., Wong C. P., J. Phys. Chem. C, 2010, 114, 14819—14825
Zhang W., Zhang Y. X., Tian Y., Yang Z. Y., Xiao Q. Q., Guo X., Jing L., Zhao Y. F., Yan Y. M., Feng J. S., Sun K. N., ACS Appl. Mater. Interfaces, 2014, 6, 2248—2254
Stathi P., Gournis D., Deligiannakis Y., Rudolf P., Langmuir, 2015, 31, 10508—10516
Padilha M., Siqueira E, Jesus M., Ceragiol H., Batista Â., Nyúl⁃Tóth Á, Molnár J., Wilhelm I., Maróstica M. Jr., Krizbai I., Cruz⁃Höfling M., Mol. Pharmaceutics, 2016, 13, 3913—3924
Zhang Y. T., Liu S., Li Y., Deng D. M., Si X. J., Ding Y. P., He H. B., Luo L. Q., Wang Z. X., Biosensors and Bioelectronics, 2015, 66, 308—315
Ambros A., Chua C. K., Bonanni A., Pumera M., Chem. Mater., 2012, 24, 2292—2298
Lepock J. R., Int. J. Hyperthermia, 2003, 19, 252—266
Xu Y. X., Bai H., Lu G. W., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130, 5856—5857
Xu Y. X., Zhao L., Bai H., Hong W. J., Li C., Shi G. Q., J. Am. Chem. Soc., 2009, 131, 13490—1349709,19(38):7030-7035
DOI: http://dx.doi.org/10.30564/amor.v5i4.250
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Soo Kyung An, Ji Wong Hwong

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.