Preparation of Graphene Nanocomposite with Targeting Function and Its Photothermal / Photodynamic Combined Therapy

Soo Kyung An, Ji Wong Hwong

Abstract


The study developed a mild method to prepare partially reduced graphene oxide (pRGO). Through the non-covalent interaction of pRGO with nucleic acid aptamers AS1411 and indocytinine green (ICG), photothermal and photosensitive nanocomposites pRGO-AS1411-ICG (pRAI) were constructed. The complex structure and morphological characteristics of pRGO and pRAI were used by fourier transform infrared spectroscopy (FTIR), raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (Uv-vis), and transmission electron microscope (TEM). And the effect of EDS phototherapeutic back heat therapy on tumor cells was carried out in cell experiments. The results showed that pRAI with targeting of AS1411 can effectively kill tumor cells through the dual effects of photothermal therapy (PTT) and photodynamic therapy (PDT). 


Keywords


photothermal therapy; photodynamic therapy; reduced graphene oxide

Full Text:

PDF

References


Lucky S. S., Soo K. C., Zhang Y., Chem. Rev., 2015, 115, 1990-2042

Cai Y., Liang P. P., Tang Q. Y., Yang X. Y., Si W. L., Huang W., Zhang Q., Dong X. C., ACS Nano, 2017, 11, 1054—1063

Yang K., Wan J., Zhang S., Tian B., Zhang Y., Liu Z., Biomaterials, 2012, 33, 2206—2214

Wang Y. H., Deng H. H., Liu Y. H., Shi X. Q., Liu A. L., Peng H. P., Hong G. L., Chen W., Biosensors and Bioelectronics, 2016, 80, 140—145

Akiyama Y., Mori T., Katayama Y., Niidome T., J. Control Release, 2009, 139, 81—84

Chen R., Wang X, Yao X. K., Zheng X. C., Wang J., Jiang X. Q., Biomaterials, 2013, 34, 8314—8322

Shiao Y. S., Chiu H. H., Wu P. H., Huang Y. F., ACS Appl. Mater. Interfaces, 2014, 6, 21832—21841

Gonz. lez⁃Delgado José A., Kennedy P. J., Ferreira M., ToméJoao

Barth B. M., Altinoglu E. I., Shanmugavelandy S. S., Kaiser J. M., Crespo⁃Gonzalez D., DiVittore N. A., McGovern C., Goff T. M., Keasey N. R., Adair J. H., Loughran T. P. Jr., Claxton D. F., Kester M., ACS Nano, 2011, 5, 5325—5337

Yoon H. K., Ray A., Lee Y. E., Kim G., Wang X., Kopelman R., J. Mater. Chem., 2013, 1, 5611—5619

De la Zerda A., Zavaleta C., Keren S., Vaithilingam S., Bodapati S., Liu Z., Levi J., Smith B. R., Ma T. J., Oralkan O., Cheng Z., Chen X., Dai H., Khuri⁃Yakub B. T., Gambhir S. S., Nat. Nanotechnol., 2008, 3, 557—562

Huang Y. F., Chang H. T., Tan W., Anal. Chem., 2008, 80, 567—572

Tang Z., Zhu Z., Mallikaratchy P., Yang R., Sefah K., Tan W., Chem. Asian J., 2010, 5, 783—786

Shieh Y. A., Yang S. J., Wei M. F., Shieh M. J., ACS Nano, 2010, 4, 1433—1442

Liu J. B., Li Y. L., Li Y. M., Li J. H., Deng Z. X., J. Mater. Chem., 2010, 20, 900—906

Lin Z. Y., Yao Y. G., Li Z., Liu Y., Li Z., Wong C. P., J. Phys. Chem. C, 2010, 114, 14819—14825

Zhang W., Zhang Y. X., Tian Y., Yang Z. Y., Xiao Q. Q., Guo X., Jing L., Zhao Y. F., Yan Y. M., Feng J. S., Sun K. N., ACS Appl. Mater. Interfaces, 2014, 6, 2248—2254

Stathi P., Gournis D., Deligiannakis Y., Rudolf P., Langmuir, 2015, 31, 10508—10516

Padilha M., Siqueira E, Jesus M., Ceragiol H., Batista Â., Nyúl⁃Tóth Á, Molnár J., Wilhelm I., Maróstica M. Jr., Krizbai I., Cruz⁃Höfling M., Mol. Pharmaceutics, 2016, 13, 3913—3924

Zhang Y. T., Liu S., Li Y., Deng D. M., Si X. J., Ding Y. P., He H. B., Luo L. Q., Wang Z. X., Biosensors and Bioelectronics, 2015, 66, 308—315

Ambros A., Chua C. K., Bonanni A., Pumera M., Chem. Mater., 2012, 24, 2292—2298

Lepock J. R., Int. J. Hyperthermia, 2003, 19, 252—266

Xu Y. X., Bai H., Lu G. W., Li C., Shi G. Q., J. Am. Chem. Soc., 2008, 130, 5856—5857

Xu Y. X., Zhao L., Bai H., Hong W. J., Li C., Shi G. Q., J. Am. Chem. Soc., 2009, 131, 13490—1349709,19(38):7030-7035




DOI: http://dx.doi.org/10.30564/amor.v5i4.250

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Soo Kyung An, Ji Wong Hwong

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.