Open Journal Systems

Cancer cell metastasis; perspectives from the focal adhesion

Lefteris C Zacharia ()
Vasiliki Gkretsi ()


In almost all cancers, most patients die from metastatic disease and not from the actual primary tumor. That is why addressing the problem of metastasis is of utmost importance for the successful treatment and improved survival of cancer patients. Metastasis is a complex process that ultimately leads to cancer cells spreading from the tumor to distant sites of the body. During this process, cancer cells tend to lose contact with the extracellular matrix (ECM) and neighboring cells within the primary tumor, and are thus able to invade surrounding tissues. Hence, ECM, and the ECM-associated adhesion proteins play a critical role in the metastatic process. This review will focus on recent literature regarding interesting and novel molecules at the cell-ECM adhesion sites, namely migfilin, mitogen-inducible gene-2 (Mig-2) and Ras suppressor-1 (RSU-1), that are also critically involved in cancer cell metastasis, emphasizing on data from experiments performed in vitro in breast cancer and hepatocellular carcinoma cell lines as well as human breast cancer tissue samples.


Apoptosis; Breast Cancer; Cell-matrix Adhesions; Fascin-1; Hepatocellular Carcinoma, Invasion; Metastasis; Migfilin; Pinch-1; PUMA; Ras Suppressor-1; VASP

Full Text:



Weigelt B, Peterse JL, van't Veer LJ. Breast cancer metastasis: markers and models. Nat Rev Cancer. 2005; 5:591-602. doi: 10.1038/nrc1670 doi: 10.1038/nrc1670

Li Y, Tang ZY, Hou JX. Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol. 2011. doi:10.1038/nrgastro.2011.196

Kakonen SM, Mundy GR. Mechanisms of osteolytic bone metastases in breast carcinoma. Cancer. 2003; 97:834-9. doi:10.1002/cncr.11132

Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002; 110:673-87. doi: 10.1016/S0092-8674(02)00971-6

Canel M, Serrels A, Frame MC, et al. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci. 2013; 126:393-401. doi:10.1242/jcs.100115

Ungefroren H, Sebens S, Seidl D, et al. Interaction of tumor cells with the microenvironment. Cell Commun Signal. 2011; 9:18. doi:10.1186/1478-811X-9-18

Tu Y, Wu S, Shi X, et al. Migfilin and Mig-2 link focal adhesions to Filamin and the actin cytoskeleton and function in cell shape modulation. Cell. 2003; 113:37-47. doi: 10.1016/S0092-8674(03)00163-6

Gkretsi V, Zhang Y, Tu Y, et al. Physical and functional association of migfilin with cell-cell adhesions. J Cell Sci. 2005; 118:697-710. doi: 10.1242/​jcs.01638

Zhang Y, Tu, Y, Gkretsi, V, et al. Migfilin interacts with vasodilator-stimulated phosphoprotein (VASP) and regulates VASP localization to cell-matrix adhesions and migration. J Biol Chem. 2006; 281:12397-407. doi: 10.1074/jbc.M512107200

Castellano F, Le Clainche, C, Patin, D, A WASp–VASP complex regulates actin polymerization at the plasma membrane. EMBO Journal. 2001; 20:5603-14. doi:10.1093/emboj/20.20.5603

Sechi AS, Wehland J. ENA/VASP proteins: multifunctional regulators of actin cytoskeleton dynamics. Front Biosci. 2004; 9:1294-310. doi: 10.2741/1324

Kwiatkowski AV, Gertler FB, Loureiro JJ. Function and regulation of Ena/VASP proteins. Trends Cell Biol. 2003; 13:386-92. doi: 10.1016/S0962-8924(03)00130-2

Papachristou DJ, Gkretsi V, Tu Y, et al. Increased cytoplasmic level of migfilin is associated with higher grades of human leiomyosarcoma. Histopathology. 2007; 51:499-508. doi: 10.1111/j.1365-2559.2007.02791.x

He H, Ding F, Li Y, et al. Migfilin regulates esophageal cancer cell motility through promoting GSK-3beta-mediated degradation of beta-catenin. Mol Cancer Res. 2012; 10:273-81. doi:10.1158/1541-7786

Ou Y, Ma L, Dong L, et al. Migfilin protein promotes migration and invasion in human glioma through epidermal growth factor receptor-mediated phospholipase C-gamma and STAT3 protein signaling pathways. The Journal of biological chemistry. 2012; 287:32394-405. doi: 10.1074/jbc.M112.393900

Gkretsi V, Papanikolaou V, Zacharia LC, et al. Mitogen-inducible Gene-2 (MIG2) and migfilin expression is reduced in samples of human breast cancer. Anticancer Res. 2013; 33:1977-81.

Davidson B, Holth A, Nguyen MT, et al. Migfilin, alpha-parvin and beta-parvin are differentially expressed in ovarian serous carcinoma effusions, primary tumors and solid metastases. Gynecol Oncol. 2013;128:364-70. doi: 10.1016/j.ygyno.2012.10.015

Gkretsi V, Bogdanos DP. Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis. Exp Cell Res. 2015. doi:10.1016/j.yexcr.2015.03.002

Maekawa M, Ishizaki T, Boku S, et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999; 285:895-8. doi:10.1126/science.285.5429.895

Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 2003; 4:446-56. doi:10.1038/nrm1128

He H, Ding F, Li S, et al. Expression of migfilin is increased in esophageal cancer and represses the Akt-beta-catenin activation. Am J Cancer Res. 2014; 4:270-8.

Mackinnon AC, Qadota H, Norman KR, et al. C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol. 2002; 12:787-97. doi: 10.1016/S0960-9822(02)00810-2

Sepulveda JL, Gkretsi V, Wu C. Assembly and signaling of adhesion complexes. Curr Top Dev Biol. 2005; 68:183-225. doi:10.1016/S0070-2153(05)68007-6

Kato K, Shiozawa T, Mitsushita J, et al. Expression of the mitogen-inducible gene-2 (mig-2) is elevated in human uterine leiomyomas but not in leiomyosarcomas. Hum Pathol. 2004; 35:55-60. doi:10.1016/j.humpath.2003.08.019

Shen Z, Ye Y, Dong L, et al. Kindlin-2: a novel adhesion protein related to tumor invasion, lymph node metastasis, and patient outcome in gastric cancer. Am J Surg. 2012; 203:222-9. doi:10.1016/j.amjsurg.2011.06.050

An Z, Dobra K, Lock JG, et al. Kindlin-2 is expressed in malignant mesothelioma and is required for tumor cell adhesion and migration. Int J Cancer. 2010; 127:1999-2008. doi: 10.1002/ijc.25223

Talaat S, Somji S, Toni C, et al. Kindlin-2 expression in arsenite- and cadmium-transformed bladder cancer cell lines and in archival specimens of human bladder cancer. Urology. 2011; 77:1507 e1-7. doi:10.1016/j.urology.2011.02.040

Papachristou DJ, Gkretsi V, Rao UN, et al. Expression of integrin-linked kinase and its binding partners in chondrosarcoma: association with prognostic significance. Eur J Cancer. 2008; 44:2518-25. doi: 10.1016/j.ejca.2008.07.021

Gozgit JM, Pentecost BT, Marconi SA, et al. Use of an aggressive MCF-7 cell line variant, TMX2-28, to study cell invasion in breast cancer. Mol Cancer Res. 2006; 4:905-13. doi:10.1158/1541-7786.MCR-06-0147

Shi X, Wu C. A suppressive role of mitogen inducible gene-2 in mesenchymal cancer cell invasion. Mol Cancer Res. 2008; 6:715-24. doi: 10.1158/1541-7786.MCR-07-2026.

Xu X, Rongali SC, Miles JP, et al. pat-4/ILK and unc-112/Mig-2 are required for gonad function in Caenorhabditis elegans. Exp Cell Res. 2006; 312:1475-83. doi:10.1016/j.yexcr.2006.01.006

Wu C. The PINCH-ILK-parvin complexes: assembly, functions and regulation. Biochim Biophys Acta. 2004; 1692:55-62. doi:10.1016/j.bbamcr.2004.01.006

Legate KR, Montanez E, Kudlacek O, et al. ILK, PINCH and parvin: the tIPP of integrin signalling. Nat Rev Mol Cell Biol. 2006; 7:20-31. doi:10.1038/nrm1789

Wickstrom SA, Lange A, Montanez E, et al. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! Embo J. 2010; 29:281-91. doi: 10.1038/emboj.2009.376.

Chen K, Tu Y, Zhang Y, et al. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells. J Biol Chem. 2008; 283:2508-17. doi: 10.1074/jbc.M707307200

Xu Z, Fukuda T, Li Y, et al. Molecular dissection of PINCH-1 reveals a mechanism of coupling and uncoupling of cell shape modulation and survival. J Biol Chem. 2005; 280:27631-7. doi: 10.1074/jbc.M504189200

Dougherty GW, Chopp T, Qi SM, et al. The Ras suppressor Rsu-1 binds to the LIM 5 domain of the adaptor protein PINCH1 and participates in adhesion-related functions. Exp Cell Res. 2005; 306:168-79. doi:10.1016/j.yexcr.2005.01.025

Kadrmas JL, Smith MA, Clark KA, et al. The integrin effector PINCH regulates JNK activity and epithelial migration in concert with Ras suppressor 1. J Cell Biol. 2004; 167:1019-24. doi:10.1083/jcb.200408090

Cutler ML, Bassin RH, Zanoni L, et al. Isolation of rsp-1, a novel cDNA capable of suppressing v-Ras transformation. Mol Cell Biol. 1992; 12:3750-6. doi: 10.1128/MCB.12.9.3750

Dougherty GW, Jose C, Gimona M, et al. The Rsu-1-PINCH1-ILK complex is regulated by Ras activation in tumor cells. Eur J Cell Biol. 2008; 87:721-34. doi:10.1016/j.ejcb.2008.02.011

Vasaturo F, Dougherty GW, Cutler ML. Ectopic expression of Rsu-1 results in elevation of p21CIP and inhibits anchorage-independent growth of MCF7 breast cancer cells. Breast Cancer Res Treat. 2000; 61:69-78. doi: 10.1023/A:1006462323260

Gkretsi V, Bogdanos DP. Elimination of Ras Suppressor-1 from hepatocellular carcinoma cells hinders their in vitro metastatic properties. Anticancer Res. 2015; 35:1509-12.

Giotopoulou N, Valiakou V, Papanikolaou V, et al. Ras suppressor-1 promotes apoptosis in breast cancer cells by inhibiting PINCH-1 and activating p53-upregulated-modulator of apoptosis (PUMA); verification from metastatic breast cancer human samples. Clin Exp Metastasis. 2015; 32:255-65.

Wang Y, Simpson JA, Wluka AE, et al. Relationship between body adiposity measures and risk of primary knee and hip replacement for osteoarthritis: a prospective cohort study. Arthritis Res Ther. 2009; 11:R31. doi:10.1186/ar2636

Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011; 147:275-92. doi: 10.1016/j.cell.2011.09.024

Mehlen P, Puisieux A. Metastasis: a question of life or death. Nat Rev Cancer. 2006; 6:449-58. doi:10.1038/nrc1886

Rennebeck G, Martelli M, Kyprianou N. Anoikis and survival connections in the tumor microenvironment: is there a role in prostate cancer metastasis? Cancer Res. 2005; 65:11230-5. doi: 10.1158/0008-5472.CAN-05-2763



  • There are currently no refbacks.

Copyright (c) 2018 Lefteris C Zacharia, Vasiliki Gkretsi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.