The war against cancer: Suicide gene therapy

Muzeyyen Izmirli, Dilara Sonmez, Bulent Gogebakan

Abstract


The National Cancer Institute and the American Cancer Society announced that 1.6 million new cancer cases are projected to occur in the USA in 2016. One of the most innovative approaches against cancer is suicide gene therapy, in which suicide-inducing transgenes are introduced into cancer cells. When cancer treatments target the total elimination of tumor cells, there will be no side effects for normal cells. Cancer tissues are targeted through various targeted transport methods, followed by tissue-specific enzymes converting a systemically suitable prodrug into an active drug in the tumor. Suicidal genes are delivered by transporters, such as viral and non-viral vectors, into cancer cells. Suicide gene therapeutic strategies currently pursued are herpes simplex virus thymidine kinase gene with prodrug ganciclovir, cytosine deaminase gene, carboxyl esterase/irinotecan, varicella zoster virus thymidine kinase/6-methoxypurine arabinonucleoside, nitroreductase Nfsb/5-(aziridin-1-yl)-2,4-dinitrobenzamide, carboxypeptidase G2/4-[(2-chloroethyl)(2- mesyloxyethyl)amino]benzoyl-L-glutamic acid, cytochrome p450-isofosfamide, and cytochrome p450-cyclophosphamide. The goal of this review is to summarize the different suicide gene systems and gene delivery vectors addressed to cancer cells, with a particular emphasis on recently developed systems. Finally, we briefly describe the advantageous clinical applications and potential side effects of suicide gene therapy. 

Keywords


suicide gene therapy; cancer; vector

Full Text:

PDF

References


Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016; 66(1): 7–30. doi: 10.3322/caa c.21332.

Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525(2): 162–169. doi: 10.1016/j.gen e.2013.03.137.

Biasco L, Baricordi C, Aiuti A. Retroviral integrations in gene therapy trials. Mol Ther 2012; 20(4): 709–716. doi: 1 0.1038/mt.2011.289.

Duarte S, Carle G, Faneca H, Pedroso de Lima MC, Pierrefite-Carle V. Suicide gene therapy in cancer: Where do we stand now? Cancer Lett 2012; 324(2): 160–170. doi: 10.1016/j.canlet.2012.05.023.

Curigliano G, Cardinale D, Suter T, Palataniotis G, de Azambuja E, Sandri MT, Criscitiello C, Goldhirsch A, Cipolla C, Roila F. Cardiovascular toxicity induced by chemotherapy, targetedagents and radiotherapy: ESMO Clinical Practice Guidelines. Ann Oncol 2012; 23(7): 155–166. doi: 10.1093/annonc/mds293.

Malecki M. Frontiers in suicide gene therapy of cancer. J Genet Syndr Gene Ther 2012; 3(4): 1000119. doi: 10.417 2/2157-7412.1000119.

Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H, Li Q, Freitag L, Zarogoulidis K, Malecki M. Suicide gene therapy for cancer; Old dog new tricks?. J Genet Syndr Gene Ther 2013; 4(4): 1000139.doi: 10.4172/2157-7412.1000139.

Balfour HH Jr. Antiviral drugs. N Engl J Med 1999; 340(16): 1255–1268. doi: 10.1056/NEJM1999042234016 08.

Dong JY, Woraratanadharm J. Gene therapy vector design strategies for the treatment of cancer. Future Oncol 2005; 1(3): 361–373. doi: 10.1517/14796694.1.3.361.

Sancar A. Mechanisms of DNA excision repair. Science 1994; 266(5193): 1954–1956. doi: 10.1126/science.78011 20.

Wei SJ, Chao Y, Hung YM, Lin WC, Yang DM, Shih YL, Ch’ang LY, Whang-Pheng J, Yang WK. S- and G2-phase cell cycle arrests and apoptosis induced by ganciclovir in murine melanoma cells transduced with herpes simplex virus thymidine kinase. Exp Cell Res 1998; 241(1): 66–75.doi: 10.1006/excr.1998.4005.

Fischer U, Steffens S, Frank S, Rainov NG, Schulze-Osthoff K, Kramm CM. Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-fluorocytosine suicide gene therapy-induced cell death in glioma cells. Onco-gene 2005; 24(7): 1231–1243. doi: 10.1038/sj.onc.1208290.

Bondanza A, Hambach L, Aghai Z, Nijmeijer B, Kaneko S, Mastaglio S, Radrizzani M, Fleischauer K, Ciceri F, Bordignon C, Bonini C, Goulmy E. IL-7 receptor expression identifies suicide gene-modified allospecific CD8+ T cells capable of self-renewal and differentiation into antileukemia effectors. Blood 2011; 117(24): 6469–6478. doi: 10.1182/blood-2010-11-320366.

Tang W, He Y, Zhou S, Ma Y, Liu G. A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. J Exp Clin Cancer Res 2009; 28: 155. doi: 10.1186/1756-9966-28-155.

Kakinoki K, Nakamoto Y, Kagaya T, Tsuchiyama T, Sakai Y, Nakahama T, Mukaida N, Kaneko S. Prevention of intrahepatic metastasis of liver cancer by suicide gene therapy and chemokine ligand 2/monocyte chemoattractant protein-1 delivery in mice. J Gene Med 2010; 12(12): 1002–1013. doi: 10.1002/jgm.1528.

Nasu Y, Saika T, Ebara S, Kusaka N, Kaku H, Abarzua F, Manabe D, Thompson TC, Kumon H. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol Ther 2007; 15(4): 834–840. doi: 10.1038/sj.mt.6300096.

Negroni L, Samson M, Guigonis JM, Rossi B, Pierrefite-Carle V, Baudoin C. Treatment of colon cancer cells using the cytosine deaminase/5-fluorocytosine suicide system induces apoptosis, modulation of the proteome, and Hsp 90β phosphorylation. Mol Cancer Ther 2007; 6(10): 2747–2756. doi: 10.1158/1535-7163.MCT-07-0040.

Kanai F, Kawakami T, Hamada H, Sadata A, Yoshida Y, Tanaka T, Ohashi M, Tateishi K, Shiratori Y, Omata M. Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil. Cancer Res 1998; 58(9): 1946–1951.

Richard C, Duivenvoorden W, Bourbeau D, Massie B, Roa W, Yau J, Th’ng J. Sensitivity of 5-fluorouracil-resistant cancer cells to adenovirus suicide gene therapy. Cancer Gene Ther 2007; 14(1): 57–65. doi: 10.1038/sj.cgt.7700980.

Mullen CA, Coale MM, Lowe R, Blaese RM. Tumors expressing the cytosine deaminase suicidegene can be eliminated in vivo with 5-fluorocytosine and induce protective immunity to wild type tumor. Cancer Res 1994; 54(6): 1503–1506.

Ichikawa T, Tamiya T, Adachi Y, Ono Y, Matsumoto K, Furuta T, Yoshida Y, Hamada H, Ohmoto T. In vivo efficacy and toxicity of 5-fluorocytosine/cytosine deaminase gene therapy for malignant gliomas mediated by adenovirus. Cancer Gene Ther 2000; 7(1): 74–82. doi: 10.1038/sj.cgt.7700086.

Pandha HS, Martin LA, Rigg A, Hurst SC, Stamp GW, Sikora K, Lemoine R. Genetic prodrug activation therapy for breast cancer: A phase I clinical trial of erbB-2-directed suicide gene expression. J Clin Oncol 1999; 17(7): 2180–2189.

Freytag SO, Stricker H, Pegg J, Paielli D, Pradhan DG, Peabody J, DePeralta-Venturina M, Xia X, Brown S, Lu M, Kim JH. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate- to high-risk prostate cancer. Cancer Res 2003; 63(21): 7497–7506.

Topf N, Worgall S, Hackett NR, Crystal RG. Regional ‘pro-drug’ gene therapy: Intravenous administration of an adenoviral vector expressing the E. colicytosine deaminase gene and systemic administration of 5-fluoroc-ytosine suppresses growth of hepatic metastasis of colon carcinoma. Gene Ther 1998; 5(4): 507–513. doi: 10.1038/sj.gt.3300611.

Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M. Lipofection: A highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 1987; 84(21): 7413–7417. doi: 10.1073/pnas.84.21.7413.

Fillat C, Carrió M, Cascante A, Sangro B. Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/ganciclovir system: Fifteen years of application. Curr Gene Ther 2003; 3(1): 13–26. doi: 10.2174/1566523033347426.

Forner A, Llovet JM, Bruix J. Chemoembolization for intermediate HCC: Is there proof of survival benefit? J Hepatol 2012; 56(4): 984–986. doi: 10.1016/j.jhep.2011.08.017.

Freytag SO, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M, Nafziger D, Pegg J, Paielli D, Brown S, Barton K, Lu M, Aguilar-Cordova E, Kim JH. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62(17): 4968–4976.

Conrad C, Hüsemann Y, Niess H, von Luettichau I, Huss R, Bauer C, Jauch KW, Klein CA, Bruns C, Nelson PJ. Linking transgene expression of engineered mesenchymal stem cells and angiopoietin-1-induced differentiation to target cancer angiogenesis. Ann Surg 2011; 253(3): 566–571. doi: 10.1097/SLA.0b013e3181fcb5d8.

Hacein-Bey-Abina S, Le Deist F, Carlier F, Bouneaud C, Hue C, De Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies G, Kuis W, Leiva L, Cavazzana-Calvo M. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 2002; 346(16): 1185–1193. doi: 10.1056/NEJMoa012616.

Mahato RI. Non-viral peptide-based approaches to gene delivery. J Drug Target 1999; 7(4): 249–268. doi: 10.3109/10611869909085509.

Lu Y, Madu CO. Viral-based gene delivery and regulated gene expression for targeted cancer therapy. Expert Opin Drug Deliv 2010; 7(1): 19–35. doi: 10.1517/17425240903419608.

Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, Sorensen R, Forster A, Fraser P, Cohen JI, de Saint Basile G, Alexander I, Wintergest U, Frebourg T, Aurias A, Stoppa-Lyonnet D, Romana S, Radford-Weiss I, Gross F, Valensi F, Delabesse E, Macintyre E, Sigaux F, J Soulier Leiva LE, Wissler M, Prinz C, Rabbitts TH, Le Deist F, Fischer A, Cavazzano-Calvo M. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302(5644): 415–419. doi: 10.1126/science.1088547.

Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC, Lin RJ, Yang DM, Chang CW, Chen WH, Wei HJ, Gelovani JG. Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 2005; 11(21): 7749–7756. doi: 10.1158/1078-0432.CCR-05-0876.

Yin X, Yu B,Tang Z, He B, Ren J, Xiao X, Tang W. Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene therapy induces both extrinsic and intrinsic apoptosis in a rat model of bladder cancer. Cancer Gene Ther 2013; 20(2): 77–81. doi: 10.1038/cgt.2012.86.

Ramamoorth M, Narvekar A. Non viral vectors in gene therapy – An overview. J Clin Diagn Res 2015; 9(1): GE01–GE06. doi: 10.7860/JCDR/2015/10443.5394.

Gascón AR, delPozo-Rodríguez A, Solinís MÁ. Non-viral delivery systems in gene therapy. In: Martin F (editor). Gene therapy – Tools and potential applications. InTech 2013; p. 3–17. doi: 10.5772/52704.

Gardlik R, Behuliak M, Palffy R, Celec P, Li CJ. Gene therapy for cancer: Bacteria-mediated anti-angiogenesis therapy. Gene Ther 2011; 18(5): 425–431. doi: 10.1038/gt.2010.176.

Kosaka H, Ichikawa T, Kurozumi K, Hambara H, Inoue S, Maruo T, Nakamura K, Hamada H, Date I. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma. Cancer Gene Ther 2012; 19(8): 572–578. doi: 10.1038/cgt.2012.35.

Zhao Y, Lam DH, Yang J, Lin J, Tham CK, Ng WH, Wang S. Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther 2012; 19(2): 189–200. doi: 10.1038/gt.2011.82.

Leng A, Yang J, Liu T, Cui J, Li XH, Zhu Y, Xiong T, Chen Y. Nanoparticle-delivered VEGF-silencing cassette and suicide gene expression cassettes inhibit colon carcinoma growth in vitro and in vivo. Tumour Biol 2011; 32(6): 1103–1111. doi: 10.1007/s13277-011-0210-5.

Malecki M, Malecki R. Ovarian cancer suicide gene therapy with genetically engineered, transgenically expressed, intracellular scFv antibodies against anti-oxidative enzymes. Proc S Dak Acad Sci 2008; 87: 249–260.

Kim SU. Neural stem cell-based gene therapy for brain tumors. Stem Cell Rev 2011; 7(1): 130–140. doi: 10.1007/s12015-010-9154-1.

Dudek AZ. Endothelial lineage cell as a vehicle for systemic delivery of cancer gene therapy. Transl Res 2010; 156(3): 136–146. doi: 10.1016/j.trsl.2010.07.003.

Pérez-Martínez FC, Carrión B, Ceña V. The use of nano-particles for gene therapy in the nervous system. J Alzheimers Dis 2012; 31(4): 697–710. doi: 10.3233/JAD-2012-120661.

Guo X, Huang L. Recent advances in nonviralvectors for gene delivery. Acc Chem Res 2012; 45(7): 971–979. doi: 10.1021/ar200151m.

Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Edit 2008; 47(8): 1382–1395. doi: 10.1002/anie.200703039.

Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17–18): 812–818. doi: 10.1016/j.drudis.2006.07.005.

Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 2008; 97(2): 726–745. doi: 10.1002/jps.21024.

Al-Dosari MS, Gao X. Nonviral gene delivery: Principle, limitations, and recent progress. AAPS J 2009; 11(4): 671–681. doi: 10.1208/s12248-009-9143-y.

Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, Pedroso M. Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2005; 2(2): 237–254. doi: 10.1517/17425247.2.2.237.

Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP. Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008; 29(24–25): 3477–3496. doi: 10.1016/j.biomaterials.2008.04.036.

Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MAS, Hajjar KA, Manova K, Benezra R, Rafii S. Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 2001; 7(11): 1194–1201. doi: 10.1038/nm1101-1194.

Mangipudi SS, Canine BF, Wang Y, Hatefi A. Development of a genetically engineered biomimetic vector for targeted gene transfer to breast cancer cells. Mol Pharm 2009; 6(4): 1100–1109. doi: 10.1021/mp800251x.

Wright JD, Barrena Medel NI, Sehouli J, Fujiwara K, Herzog TJ. Contemporary management of endometrial cancer. Lancet 2012; 379(9823): 1352–1360. doi: 10.1016/S0140-6736(12)60442-5.

Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, June CH. T cells with chimeric antigen receptors have potent anti-tumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 2011; 3(95): 95ra73. doi: 10.1126/scitranslmed.3002842.

Heimberger AB, Sampson JH. The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients. Expert Opin Biol Ther 2009; 9(8): 1087–1098. doi: 10.1517/14712590903124346.

Dreier B, Mikheeva G, Belousova N, Parizek P, Boczek E, Jelesarov I, Forrer P, Plückthun A, Krasnykh V. Her2-specific multivalent adapters confer designed tropism to adenovirus for gene targeting. J Mol Biol 2011; 405(2): 410–426. doi: 10.1016/j.jmb.2010.10.040.

Kuroki M, Arakawa F, Khare PD, Kuroki M, Liao S, Matsumoto H, Abe H, Imakiire T. Specific targeting strategies of cancer gene therapy using a single-chain variable fragment (scFv) with a high affinity for CEA. Anticancer Res 2000; 20(6A): 4067–4071.

Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational therapeutic target for personalized cancer treatment. Drug Resist Updat 2014; 17(4–6): 89–95. doi: 10.1016/j.drup.2014.10.002.

Zhang SS, Han ZP, Jing YY, Tao SF, Li TJ, Wang H, Wang Y, Li R, Yang Y, Zhao X, Xu XD, Yu ED, Rui YC, Liu HJ, Zhang L, Wei LX. CD133+CXCR4+ colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med 2012; 10: 85. doi: 10.1186/1741-7015-10-85.

Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR, Aleskandarany M, Paish EC, Macmillan RD, Nicholson RI, Ellis IO. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat 2010; 119(2): 283–293. doi: 10.1007/s10549-009-0345-x.

Neves S, Faneca H, Bertin S, Konopka K, Düzgüneş N, Pierrefite-Carle V, Simões S, Pedroso de Lima MC. Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the anti-tumoral response. Cancer Gene Ther 2009; 16(1): 91–101. doi: 10.1038/cgt.2008.60.

Jonckheere N, Skrypek N, Van Seuningen I. Mucins and pancreatic cancer. Cancers (Basel) 2010; 2(4): 1794–1812. doi: 10.3390/cancers2041794.

Torres MP, Chakraborty S, Souchek J, Batra SK. Mucin-based targeted pancreatic cancer therapy. Curr Pharm Des 2012; 18(17): 2472–2481. doi:10.2174/13816128112092472#sthash.GEG1sx5o.dpuf.

Plumb JA, Bilsland A, Kakani R, Zhao JQ, Glasspool RM, Knox RJ, Evans TRJ, Keith WN. Telomerase-specific suicide gene therapy vectors expressing bacterial nitroreductase sensitize human cancer cells to the pro-drug CB1954. Oncogene 2001; 20(53): 7797–7803. doi: 10.1038/sj.onc.1204954.

Malecki M, Anderson M, Beauchaine M, Seo S, Tombokan X, Malecki R. TRA-1-60+, SSEA-4+, Oct4A+, Nanog+ clones of pluripotent stem cells in the embryonal carcinomas of the ovaries. J Stem Cell Res Ther 2012; 2(5): 130.

Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF, Milone MC, Levine BL, June CH. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368(16): 1509–1518. doi: 10.1056/NEJMoa1215134.

Liu T, Ye L,He Y,Chen X, Peng J, Zhang X, Yi H, Peng F, Leng A. Combination gene therapy using VEGF-shRNA and fusion suicide gene yCDglyTK inhibits gastric carcinoma growth. Exp Mol Pathol 2011; 91(3): 745–752. doi: 10.1016/j.yexmp.2011.07.007.

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63(1): 11–30. doi: 10.3322/caac.21166.

Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 – An update. J Gene Med 2013; 15(2): 65–77. doi: 10.1002/jgm.2698.

Song C, Xiang J, Tang J, Hirst DG, Zhou J, Chan KM, Li G. Thymidine kinase gene modified bone marrow mesenchymal stem cells as vehicles for antitumor therapy. Hum Gene Ther 2011; 22(4): 439–449. doi: 10.1089/hum.2010.116.

Cottin S, Gould PV, Cantin L, Caruso M. Gap junctions in human glioblastomas: Implications for suicide gene therapy. Cancer Gene Ther 2011; 18(9): 674–681. doi: 10.1038/cgt.2011.38.

Schepelmann S, Springer CJ. Viral vectors for gene-directed enzyme prodrug therapy. Curr Gene Ther 2006; 6(6): 647–670. doi:10.2174/156652306779010679#sthash.e2TpnFiB.dpuf.

Spring H, Schüler T,Arnold B,Hämmerling GJ, Ganss R. Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci USA 2005; 102(50): 18111–18116. doi: 10.1073/pnas.0507158102.

Stappenbeck TS, Miyoshi H. The role of stromal stem cells in tissue regeneration and wound repair. Science 2009; 324(5935): 1666–1669. doi: 10.1126/science.1172687.

Qiu Y,Peng GL, Liu QC, Li FL, Zou XS, He JX. Selective killing of lung cancer cells using carcinoembryonic anti-gen promoter and double suicide genes, thymidine kinase and cytosine deaminase (pCEA-TK/CD). Cancer Lett 2012; 316(1): 31–38. doi: 10.1016/j.canlet.2011.10.015.

Tanaka M,Inase N, Miyake S, Yoshizawa Y. Neuron specific enolase promoter for suicide gene therapy in small cell lung carcinoma. Anticancer Res 2001; 21(1A): 291–294.

Michaelsen SR, Christensen CL, Sehested M, Cramer F, Poulsen TT, Patterson AV, Poulsen HS. Single agent- and combination treatment with two targeted suicide gene therapy systems is effective in chemoresistant small cell lung cancer cells. J Gene Med 2012; 14(7): 445–458. doi: 10.1002/jgm.2630.

Frängsmyr L, Baranov V, Hammarström S. Four carcinoembryonic antigen subfamily members, CEA, NCA, BGP and CGM2, selectively expressed in the normal human colonic epithelium, are integral components of the fuzzy coat. Tumour Biol 1999; 20(5): 277–292. doi: 10.1159/000030075.

Wang ZX, Bian HB, Yang JS, De W, Ji XH. Adenovirus-mediated suicide gene therapy under the control of Cox-2 promoter for colorectal cancer. Cancer Biol Ther 2009; 8(15): 1480–1488. doi: 10.4161/cbt.8.15.8940.

Dubrovska A, Elliott J, Salamone RJ, Telegeev GD, Stakhovsky AE, Schepotin IB, Yan F, Wang Y, Bouchez LC, Kularatne SA, Watson J, Trussell C, Reddy VA. CXCR4 expression in prostate cancer progenitor cells. PLoS ONE 2012; 7(2): 31226. doi:10.1371/journal.pone.0031226.

Alptekin D, Izmirli M, Bayazit Y, Luleyap HU, Yilmaz MB, Soyupak B, Erkoc MA, Tansug Z. Evaluation of the effects of androgen receptor gene trinucleotide repeats and prostate-specific antigen gene polymorphisms on prostate cancer. Genet Mol Res 2012; 11(2): 1424–1432. doi: 10.4238/2012.May.18.1.

Ahn M,Lee SJ,Li X,Jiménez JA, Zhang YP, Bae KH, Mohammadi Y, Kao C, Gardner TA. Enhanced combined tumor-specific oncolysis and suicide gene therapy for prostate cancer using M6 promoter. Cancer Gene Ther 2009; 16(1): 73–82. doi: 10.1038/cgt.2008.59.

Liu J, Cristea MC, Frankel P, Neuhausen SL, Steele L, Engelstaedter V, Matulonis U, Sand S, Tung N, Garber JE, Weitzel JN. Clinical characteristics and outcomes of BRCA-associated ovarian cancer: Genotype and survival. Cancer Genet 2012; 205(1–2): 34–41. doi: 10.1016/j.cancergen.2012.01.008.

Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62(1): 10–29. doi: 10.3322/caac.20138.

Robinson BW, Musk AW, Lake RA. Malignant mesothelioma. Lancet 2005; 366(9483): 397–408. doi: 10.1016/S0140-6736(05)67025-0.




DOI: http://dx.doi.org/10.30564/amor.v2i3.54

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Muzeyyen Izmirli, Dilara Sonmez, Bulent Gogebakan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.