Multi-omics approach to infer cancer therapeutic targets on chromosome 20q across tumor types

Antoine M Snijders, Jian-Hua Mao


The identification of good targets is a critical step for the development of targeted therapies for cancer treatment. Here, we used a multi-omics approach to delineate potential targets on chromosome 20q, which frequently shows a complex pattern of DNA copy number amplification in many human cancers suggesting the presence of multiple driver genes. By comparing the amounts of individual mRNAs in cancer from 11 different human tissues with those in their corresponding normal tissues, we identified 18 genes that were robustly elevated across human cancers. Moreover, we found that higher expression levels of a majority of these genes were associated with poor prognosis in many human cancer types. Using DNA copy number and expression data for all 18 genes obtained from The Cancer Genome Atlas project, we discovered that amplification is a major mechanism driving overexpression of these 18 genes in the majority of human cancers. Our integrated analysis suggests that 18 genes on chromosome 20q might serve as novel potential molecular targets for targeted cancer therapy.


Cancer; therapeutic targets; chromosome 20q; omics; bioinformatics

Full Text:



Goldman JM, Melo JV. Chronic myeloid leukemia – Advances in biology and new approaches to treatment. N Engl J Med 2003; 349: 1451–1464. doi: 10.1056/NEJMra020777.

Fausel C. Targeted chronic myeloid leukemia therapy: Seeking a cure. Am J Health Syst Pharm 2007; 64(24): S9–S15. doi: 10.2146/ajhp070482.

Davies H, Bignell GR, Cox C, Stephens P, Edkins S, et al. Mutations of the BRAF gene in human cancer. Nature 2002l; 417: 949–954. doi: 10.1038/nature00766.

Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G, et al. Combined vemurafenib and cobimetinib in BRAF- mutated melanoma. N Engl J Med 2014; 371: 1867–1876. doi: 10.1056/NEJMoa1408868.

Scaltriti M, Nuciforo P, Bradbury I, Sperinde J, Agbor- Tarh D, et al. High HER2 expression correlates with response to the combination of lapatinib and trastuzumab. Clin Cancer Res 2015; 21: 569–576. doi: 10.1158/1078-0432.CCR-14-1824.

Snijders AM, Fridlyand J, Mans DA, Segraves R, Jain AN, et al. Shaping of tumor and drug-resistant genomes by instability and selection. Oncogene 2003; 22: 4370–4379. doi: 10.1038/sj.onc.1206482.

Wilting SM, Snijders PJF, Meijer GA, Ylstra B, van den Ijssel PRLA, et al. Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J Pathol 2006; 209(2): 220–230. doi: 10.1002/path.1966.

Fridlyand J, Snijders AM, Ylstra B, Li H, Olshen A, et al. Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 2006; 6: 96. doi: 10.1186/1471-2407-6-96.

Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R, et al. SurvExpress: An online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE 2013; 8: e74250. doi: 10.1371/journal.pone.0074250. 10. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6(269): pl1. doi: 10.1126/scisignal.2004088.

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, et al. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404. doi: 10.1158/2159-8290.CD-12-0095.

Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013. Nucleic Acids Res 2013; 41(W1): W77–W83. doi: 10.1093/nar/gkt439.

Katayama H, Brinkley WR, Sen S. The Aurora kinases: Role in cell transformation and tumorigenesis. Cancer Metastasis Rev 2003; 22(4): 451–464. doi: 10.1023/A:1023789416385.

Warner SL, Bearss DJ, Han H, Von Hoff DD. Targeting Aurora-2 kinase in cancer. Mol Cancer Ther 2003; 2(6): 589–595.

Kufer TA, Silljé HH, Körner R, Gruss OJ, Meraldi P, et al. Human TPX2 is required for targeting Aurora-A kinase to the spindle. J Cell Biol 2002; 158(4): 617–623. doi: 10.1083/jcb.200204155.

Malumbres M, Pérez de Castro I. Aurora kinase A inhibitors: Promising agents in antitumoral therapy. Expert Opin Ther Targets 2014; 18(12): 1377–1393. doi: 10.1517/14728222.2014.956085.

Katayama H, Sen S. Aurora kinase inhibitors as anticancer molecules. Biochim Biophys Acta 2010; 1799(10–12): 829–839. doi: 10.1016/j.bbagrm.2010.09.004.

Blower MD, Nachury M, Heald R, Weis K. A Rae1- containing ribonucleoprotein complex is required for mitotic spindle assembly. Cell 2005; 121(2): 223–234. doi: 10.1016/j.cell.2005.02.016.

Babu JR, Jeganathan KB, Baker DJ, Wu X, Kang-Decker N, et al. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J Cell Biol 2003; 160(3): 341–353. doi: 10.1083/jcb.200211048.

Cheng J, Gao J, Shuai X, Tao K. Oncogenic protein SALL4 and ZNF217 as prognostic indicators in solid cancers: A meta-analysis of individual studies. Oncotarget 2016; 7(17): 24314–24325. doi: 10.18632/oncotarget.8237.

Cohen PA, Donini CF, Nguyen NT, Lincet H, Vendrell JA. The dark side of ZNF217, a key regulator of tumorigenesis with powerful biomarker value. Oncotarget 2015; 6(39): 41566–41581. doi: 10.18632/oncotarget.5893.

Chen YY, Li ZZ, Ye YY, Xu F, Niu RJ, et al. Knockdown of SALL4 inhibits the proliferation and reverses the resistance of MCF-7/ADR cells to doxorubicin hydrochloride. BMC Mol Biol 2016; 17: 6. doi: 10.1186/s12867-016-0055-y.

Littlepage LE, Adler AS, Kouros-Mehr H, Huang G, Chou J, et al. The transcription factor ZNF217 is a prognostic biomarker and therapeutic target during breast cancer progression. Cancer Discov 2012; 2: 638–651. doi: 10.1158/2159-8290.CD-12-0093.

Rosen SD, Lemjabbar-Alaoui H. Sulf-2: An extracellular modulator of cell signaling and a cancer target candidate. Expert Opin Ther Targets 2010; 14(9): 935–949. doi: 10.1517/14728222.2010.504718.

Lui NS, Yang YW, van Zante A, Buchanan P, Jablons DM, et al. SULF2 expression is a potential diagnostic and prognostic marker in lung cancer. PLoS ONE 2016; 11: e0148911. doi: 10.1371/journal.pone.0148911.

Yuksel UM, Turker I, Dilek G, Dogan L, Gulcelik MA, et al. Does CSE1L overexpression affect distant metastasis development in breast cancer? Oncol Res Treat 2015; 38(9): 431–434. doi: 10.1159/000438501.

Tai CJ, Shen SC, Lee WR, Liao CF, Deng WP, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res 2010; 316(17): 2969–2981. doi: 10.1016/j.yexcr.2010.07.019.

Walian PJ, Hang B, Mao JH. Prognostic significance of FAM83D gene expression across human cancer types. Oncotarget 2016; 7(3): 3332–3340. doi: 10.18632/oncotarget.6620.

Varisli L. Meta-analysis of the expression of the mitosis-related gene FAM83D. Oncol Lett 2012; 4(6): 1335–1340. doi: 10.3892/ol.2012.925.

Liao W, Liu W, Liu X, Yuan Q, Ou Y, et al. Upregulation of FAM83D affects the proliferation and invasion of hepatocellular carcinoma. Oncotarget 2015; 6(27): 24132– 24147. doi: 10.18632/oncotarget.4432.

Wang D, Han S, Peng R, Wang X, Yang XX, et al. FAM83D activates the MEK/ERK signaling pathway and promotes cell proliferation in hepatocellular carcinoma. Biochem Biophys Res Commun 2015; 458(2): 313–320. doi: 10.1016/j.bbrc.2015.01.108.

Wang Z, Liu Y, Zhang P, Zhang W, Wang W, et al. FAM83D promotes cell proliferation and motility by downregulating tumor suppressor gene FBXW7. Oncotarget 2013; 4(12): 2476–2486. doi: 10.18632/oncotarget.1581.



  • There are currently no refbacks.

Copyright (c) 2018 Antoine M Snijders, Jian-Hua Mao

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.