Open Journal Systems

The expression and regulation of glucose transporters in tumor cells

Pengfei Zhao ()
Weiwei Wang ()
Li Yang ()
Alatan Gaole ()

Abstract


Glucose transporter proteins are involved in many physiological and biochemical processes. In particular, the high expressions of sodium-glucose cotransporter and glucose transporter proteins in tumor cells show that these two transporters play a key role in tumor cell metabolism. Studying the crystal structure and conformation of human glucose transporter proteins has enabled the development of drugs based on specific binding sites, opening up a new path towards more effective cancer treatments. This mini review serves to summarize our existing understanding of the metabolic pathways of tumor cells, focusing on the roles of glucose transporter proteins.

Keywords


glucose transporter proteins; lactate transporters; metabolic pathways; tumor cells

Full Text:

PDF

References


Widdas WF. Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the ki-netics of a possible carrier transfer. J Physiol 1952; 118: 23–39.

Michaelis L, Menten ML. Die Kinetik der Invertinwirkung. [German] The kinetics of invertase. Biochemische Zeitschrift 1913; 49: 333–369.

Kasahara M, Hinkle PC. Reconstitution and purification of the D-glucose transporter from human erythrocytes. J Biol Chem. 1977; 252(20): 7384–90.

Mueckler M, Caruso C, Baldwin S A, Panico M, Blench I, et al. Sequence and structure of a human glucose trans-porter. Science 1985; 229(4717): 941–950.

Hudson CD, Hagemann T, Mather SJ, Avril N. Resistance to the tyrosine kinase inhibitor axitinib is associated with increased glucose metabolism in pancreatic adenocarci-noma. Cell Death Dis 2014; 10; 5: e1160. doi: 10.1038/cddis.2014.12.

Deng D, Xu C, Sun P, Wu J, Yan C, et al. Crystal struc-ture of the human glucose transporter GLUT1. Nature 2014, 510(7503): 121–125. doi: 10.1038/nature13306.

Hujang Z, Wang X, Zou S, Feng D. Advance in glucose transporter in intestine. Chinese Journal of Animal Sci¬ence 2009; 45(3): 57–61.

Haas B, Eckstein N, Pfeifer V, Mayer P, Hass MDS. Efficacy, safety and regulatory status of SGLT2 inhibitors: Focus on canagliflozin. Nutr Diabetes 2014; 4: e143. doi: 10.1038/nutd.2014.40.

Yan P K, Zhang L N, Feng Y, Qu H, Qin L, et al. SHR3824, a novel selective inhibitor of renal sodium glucose cotransporter 2, exhibits antidiabetic efficacy in rodent models. Acta Pharmacol Sin, 2014; 35(5): 613–624. doi: 10.1038/aps.2013.196.

Gorboulev V, Schürmann A, Vallon V, Kipp H, Jaschke A, et al. Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion. Diabetes 2012; 61: 187–196. doi: 10.2337/db11-1029.

Ferrannini E, Solini A. SGLT2 inhibition in diabetes mellitus: Rationale and clinical prospects. Nat Rev Endo-crinol 2012; 8(8): 495–502. doi: 10.1038/nrendo.2011.2 43.

Díez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, et al. A glucose sensor hiding in a family of transporters. Proc Acad Sci USA 2003; 100(20): 11753–11758. doi: 10.1073/pnas.1733027100.

Tazawa S, Yamato T, Fujikura H, Hiratochi M, Itoh F, et al. SLC5A9/SGLT4, a new Na+-dependent glucose trans-porter, is an essential transporter for mannose, 1,5-anhydro-D-glucitol, and fructose. Life Sci 2005; 76(9): 1039–1050. doi: 10.1016/j.lfs.2004.10.016.

Sasseville LJ, Longpré JP, Wallendorff B, Lapointe JY. The transport mechanism of the human sodium/myo-inositol transporter 2 (SMIT2/SGLT6), a member of the LeuT structural family. Am J Physiol Cell Physiol 2014; 307(5): C431–441. doi: 10.1152/ajpcell.00054.2014.

Grempler R, Augustin R, Froehner S, Hildebrandt T, Si-mon E, et al. Functional characterisation of human SGLT-5 as a novel kidney-specific sodium-dependent sugar transporter. FEBS Lett 2012; 586: 248–253. doi: 10.1016/ j.febslet.2011.12.027.

Chao EC, Henry RR. SGLT2 inhibition – A novel strategy for diabetes treatment. Nat Rev Drug Discov 2010; 9(7): 551–559. doi: 10.1038/nrd3180.

Ozbudak I H, Shilo K, Tavora F, Rassaei N, Chu WS, et al. Glucose transporter-1 in pulmonary neuroendocrine carcinomas: Expression and survival analysis. Mod Pathol 2009; 22(5): 633–638. doi: 10.1038/modpathol.2009.6.

Mueckler M, Makepeace C. Transmembrane segment 12 of the Glut1 glucose transporter is an outer helix and is not directly involved in the transport mechanism. J Biol Chem 2006; 281(48): 36993–36998. doi: 10.1074/jbc. M608158200.

Wu L, Fritz JD, Powers AC. Different functional domains of GLUT2 glucose transporter are required for glucose affinity and substrate specificity. Endocrinology 1998; 139(10): 4205–4212. doi: 10.1210/endo.139.10.6245.

Vannucci S J, Reinhart R, Maher F, Bondy CA, Lee W, et al. Alterations in GLUT1 and GLUT3 glucose trans-porter gene expression following unilateral hypoxia- is-chemia in the immature rat brain. Brain Res Dev Brain Res 1998; 107(2): 255–264. doi: 10.1016/S0165-3806 (98)00021-2.

Douard V, Ferraris RP. Regulation of the fructose transporter GLUT5 in health and disease. Am J Physiol Endocrinol Metab 2008; 295(2): E227–E237. doi: 10. 1152/ajpendo.90245.2008.

Barone S, Fussell SL, Singh AK, Lucas F, Xu J, et al. Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hyper-tension. J Biol Chem 2009; 284(8): 5056–5066. doi: 10.1074/jbc.M808128200.

Zhao FQ, Keating AF. Functional properties and genomics of glucose transporters. Curr Genomics 2007; 8(2): 113–128.

Krock BL, Skuli N, Simon MC. Hypoxia-induced angiogenesis. Genes Cancer 2011; 2(12): 1117–1133. doi: 10.1177/1947601911423654.

Lin B, Li X, Zhang H. Potential therapeutic targets in tumor energy metabolism. Chem Life 2015, 35(1): 45–50.

Munoz-Pinedo C, El Mjiyad N, Ricci J E. Cancer metabolism: Current perspectives and future directions. Cell Death Dis 2012; 3: e248. doi: 10.1038/cddis.2011.123.

El Mjiyad N, Caro-Maldonado A, Ramirez-Peinado S, Muñoz-Pinedo C. Sugar-free approaches to cancer cell killing. Oncogene 2011; 30(3): 253–264. doi: 10.1038/ onc.2010.466.

Jang M, Kim SS, Lee J. Cancer cell metabolism: Implications for therapeutic targets. Exp Mol Med 2013; 45: e45. doi:10.1038/emm.2013.85.

Kojika M, Ishii G, Yoshida J, Nishimura M, Hishida T, et al. Immunohistochemical differential diagnosis between thymic carcinoma and 130 type B3 thymoma: Diagnostic utility of hypoxic marker, GLUT-1, in thymic epithelial neoplasms. Mod Pathol 2009; 22(10): 1341– 1350. doi: 10.1038/modpathol.2009.105.

Guo GF, Cai YC, Zhang B, Xu RH, Qiu HJ, et al. Over-expression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med Oncol 2011; 28 (Suppl 1): S197–203. doi: 10.1007/s12032-010- 9696-8.

Kato Y, Tsuta K, Seki K, Maeshima AM, Watanabe S, et al. Immunohistochemical detection of GLUT-1 can discriminate between reactive mesothelium and malignant mesothelioma. Mod Pathol 2007; 20(2): 215–220. doi: 10.1038/modpathol.3800732.

Hu-Lowe DD, Zou HY, Grazzini ML, Hallin ME, Wick-man GR, et al. Nonclinical antiangiogenesis and antitumor activities of axitinib (AG-013736), an oral, potent, and selective inhibitor of vascular endothelial growth factor receptor tyrosine kinases 1, 2, 3. Clin Cancer Res 2008; 14: 7272–7283. doi: 10.1158/1078-0432.CCR-08-0652.

Semenza G L. HIF-1: Upstream and downstream of cancer metabolism. Curr Opin Genet Dev 2010; 20(1): 51–56. doi: 10.1016/j.gde.2009.10.009.

Duvel K, Yecies J L, Menon S, Raman P, Lipovsky AI, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39(2): 171–183. doi: 10.1016/j.molcel.2010.06.022.

Jose C, Bellance N, Rossignol R. Choosing between glycolysis and oxidative phosphorylation: A tumor's dilemma? Biochim Biophys Acta 2011; 1807(6): 552–561. doi: 10.1016/j.bbabio.2010.10.012.

Puzio-Kuter A M. The role of p53 in metabolic regulation. Genes Cancer 2011; 2(4): 385–391. doi: 10.1177/194760 1911409738.

Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, et al. p53 regulates mitochondrial respiration. Science 2006, 312(5780): 1650–1653. doi: 10.1126/science.1126863.

Halestrap AP, Wilson MC. The monocarboxylate transporter family – Role and regulation. IUBMB Life. 2012; 64(2): 109–119. doi: 10.1002/iub.572.

Jung CY. The facilitative glucose transporter and insulin action. Exp Mol Med 1996; 28; 153–160. doi: 10.1038/emm.1996.24.

De Saedeleer CJ, Porporato PE, Copetti T, Pérez-Escuredo J, Payen VL, et al. Glucose deprivation increases monocarboxylate transporter 1 (MCT1) expression and MCT1-dependent tumor cell migration. Oncogene 2014; 33(31): 4060–4068. doi: 10.1038/onc.2013.454.

Enerson BE, Drewes LR. Molecular features, regulation, and function of monocarboxylate transporters: Implications for drug delivery. J Pharm Sci 2003; 92(8): 1531–1544. doi: 10.1002/jps.10389.

Boidot R, Vegran F, Meulle A, Le Breton A, Dessy C, et al. Regulation of monocarboxylate transporter MCT1 expression by p53 mediates inward and outward lactate fluxes in tumors. Cancer Res 2012; 72(4): 939–948. doi: 10.1158/0008-5472.CAN-11-2474.

Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95. doi:10.1038/nrc2981.



DOI: http://dx.doi.org/10.30564/amor.v2i6.92

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Pengfei Zhao, Weiwei Wang, Li Yang, Alatan Gaole

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.