Efficacy of Acid-treated Sawdust in Decolourization of Tanning Wastewater

M. Alhassan (Department of Chemistry, Sokoto State University, Sokoto, Nigeria)
M. Suleiman (Department of Chemistry, Sokoto State University, Sokoto, Nigeria)
A. A. Isah (Department of Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria)
A. G. Abdulrashid (Department of Chemistry, Sokoto State University, Sokoto, Nigeria)
Y. Nasiru (Department of Chemistry, Sokoto State University, Sokoto, Nigeria)
A. Bello (Department of Chemistry, Sokoto State University, Sokoto, Nigeria)

Abstract


Colour removal from dye-bearing effluent is a serious challenge due to the difficulty in treating such wastewater by conventional treatment methods. The present investigation explores the decolourization of contaminated wastewater using acid-activated sawdust as an adsorbent. The physicochemical properties of wastewater samples labelled A, B, and C vizaverage temperature; pH; electrical conductivity; and total dissolved solids were determined using standard methods to be 302.63; 6.1; 284.47 µS/cm;35116.66 mg/L respectively. Colour removal efficiency of the adsorbent was studied under variable conditions (contact time, rate of agitation,loading). Experimental results demonstrated that the sawdust adsorbent has a significant capacity for colour removal from tannery effluent. There was significant variation in the absorbance of the treated samples. Adsorbent dose, stirring rate, and contact time were found to be directly proportional to colour removal while pH variation of the samples show that the effluents became less alkaline (slightly acidic) after decolourization.

Keywords


Wastewater;Acid-modification;Sawdust;Physicochemical properties

Full Text:

PDF

References


[1] A.U. Itodo, M.E. Khan, D.P. Feka and B. Ogoh, Journal of Water Technology and Treatment Methods, 2017, 1(1), 1-8.

[2] P. Kushwaha and K. Upadhyay, International Journal of Engineering Sciences and Research Technology, 2015, 4(4), 213-222.

[3] V. Midha and A. Dey, International Journal Chemical Science, 2008, 6(2), 472-486.

[4] T. Mandal, D. Dasgupta, S. Mandal, and Datta, Journal of Hazardous Materials, 2010, 180, 204-211.

[5] K. Pushpendra and U. Kanjan, International Journal of Chemical Studies, 2015, 3(1), 1-316.

[6] N. MorinCrini, Winterton, P., Fourmentin, S., Wilson, L.D., Fenyvesi, E. and G. Crini, Prog Polym Sci, 2017, 78(1), 1-10.

[7] P. Sharma, H. Kaur, M. Sharma, and V. Sahore, Environ. Monit. Assess., 2015, 183, 151-195.

[8] T. Robinson, G. McMullan, R. Marchant, and P. Nigam, Technol., 2013, 77, 247-255.

[9] G.Z. Kyzas and M. Kostoglou, Materials, 2014, 7, 333-364.

[10] S. Sungur, and A. Özkan, Nat. Eng. Sci., 2017, 2 (2), 111-118.

[11] M. Rafatullah, O. Sulaiman, R. Hashim, and A. Ahmad, Journal of Hazardous Material, 2010, 177, 70-80.

[12] O. A. A. Eletta, S. I., Mustapha, O. A. Ajayi, and A. T. Ahmed, Nigerian Journal of Technological Development, 2018, 15(1), 26-32.

[13] I. Au, M. E. Khan, D. P. Feka and B. Ogoh, J. Water Technol Treat Methods, 2018, 1 (1), 104-110.

[14] T. Robinson, B. Chandran and P. Nigam, Bioresour. Technol., 2018, 84, 299-301.

[15] A.Y. Ugya, I.M. Toma and A. Abba, Sciences World Journal, 2015b, 10, 1-5.

[16] X. J. Jenitta, V. Daphne, V. Gnanasalomi, and J. J. Gnanadoss, J. Hazard. Mater., 2013, 155(3), 459-468.

[17] S.R. Khan, M.A. Khwaja, A.M. Khan, H. Ghani and S. Kazmi, Water Res. 1999, 40, 3671-3682.

[18] M. Farenzena, L. Ferreira, J.O. Trierweiler and P.M. Aquim, Braz. Archive Biol. Technol., 2005, 48, 281-289.

[19] C. Mant, S. Costa, J. Williams and E. Tambourgi, Bioresource Technol, 2006, 97, 1767-1772.

[20] A.K. Shanker, C. Cervantes, H. Loza-Tavera and S. Avudainayagam, Environ Int, 2005, 31, 739-753.

[21] N.C. Mondal, V.K. Saxena, and V.S. Singh, Current Science, 2005, 12 (25), 1-5.

[22] A. Favazzi, Pak. J. Engine. Appl. Sci., 2002, 1, 61-66.

[23] C. Alfredo, D.P. Leondina and D. Enrico, Ind. Eng. Chem. Res., 2007, 46, 6825-6830.

[24] S.J.K. Naik, A.C. Pawer, K. Vani, K Madhuri and V.V, Devi, Indian pollution Research, 2007, 26 (2), 263-265.

[25] A.Y. Ugya and A. Aziz, Merit Research Journal of Medicine and Medical Sciences, 2016, 4(11), 476-479.

[26] American Public Health Association, Standard Methods for the Examination of Water and Waste Water, 1999.

[27] M. Nur‑E‑Alam, A.S. Mia, F. Ahmad and M.M. Rahman, Applied Water Science, 2018, 8(129), 1-7.

[28] A. Aklilu, S. Mengistu and I. Fisseha, International Journal of Scientific and Research Publications, 2012, 2(12), 1-5.

[29] P. Babyshakila, Advanced Studies in Biology, 2009, 1(8), 391-398.

[30] M. Chowdhury, M.I Hossain, A. Kanti, T.K. Biswas, F.A. bin Azam and M.D. Hossain, Oriental Journal of Chemistry, 2019, 35(2), 597-604.

[31] G.L Tadesse and T.K. Guya, Advances in Life Science and Technology, 2017, 54, 58-67.

[32] Y.C. Sharma and S. Uma, J. Chem. Eng. Data, 2010, 55, 435-439.

[33] N.A. Fathy, O.I. El-Shafey and L.B. Khalil, ISRN Physical Chemistry, 2013, 1-16.



DOI: https://doi.org/10.30564/jees.v3i2.3699

Refbacks

  • There are currently no refbacks.
Copyright © 2021 Author(s)


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.