Heterogeneity of Soil Nutrients: A Review of Methodology, Variability and Impact Factors

Shaoliang Zhang (Northeast Agricultural University, 59 MuCai Street, 150030, Harbin, P. R. China)

Article ID: 526


Soil nutrient heterogeneity highly correlates to plant growth and development of environmental quality. In order to better understand nutrient cycling, heterogeneity of soil nutrients and their driving mechanism in different land use types were summarized from 1945 to 2016. By grouping keywords indexed in the titles of articles from the data base of Web of Science, two hundred and thirty one publications related to our topics were used for analysis. Soil sampling and statistical method were compared, and spatial dependence and the impact factors for soil organic matter (SOM), Nitrogen (N), Phosphorus (P) and Potassium (K). The results showed that soil nutrient heterogeneity was influenced by different factors at different scales. The spatial dependence of SOM, N and P were mainly at the moderate level (48.9-59.0%) and strong level (33.3-42.2%), while for K was at strong level (63.6-84.6%) and moderate level (15.4-36.4%). This was mainly influenced by topography, soil loss, weather condition, parent material, soil type, soil texture, land use, human activities, soil moisture, mineral element, soil structure, animal and plant. These impact factors were summarized separately, and the influence of factors at different spatiotemporal scales was discussed. At the end of the review, the ideas for further research were postulated.


Soil Nitrogen; Soil Phosphorus; Soil Potassium; Soil Organic Matter; Spatial distribution

Full Text:



[1] Forster, O. N. The ecological design and planning reader. Oisland press, Washington, 2014.

[2] Bojie, F. Landscape ecology: theory and application. Science press, Beijing, 2011.

[3] Maestre, F. T. and Reynolds, J. F. Spatial heterogeneity in soil nutrient supply modulates nutrient and biomass responses to multiple global change drivers in model grassland communities. Global Change Biology, 12, 12 (Dec 2006), 2431-2441.

[4] Brady, N. C. and Weil, R. R. Nature and properties of soils. Macmillan publishing company, New York, 2000.

[5] Elgersma, A. M. and Dhillion, S. S. Geographical variability of relationships between forest communities and soil nutrients along a temperature-fertility gradient in Norway. Forest Ecology and Management, 158, 1-3 (Mar 2002), 155-168.

[6] Xi, N. X., Carrere, P. and Bloor, J. M. G. Nitrogen form and spatial pattern promote asynchrony in plant and soil responses to nitrogen inputs in a temperate grassland. Soil Biology & Biochemistry, 71 (Apr 2014), 40-47.

[7] Li, D. F., Gao, G. Y., Lu, Y. H. and Fu, B. J. Multi-scale variability of soil carbon and nitrogen in the middle reaches of the Heihe River basin, northwestern China. Catena, 137 (Feb 2016), 328-339.

[8] Kar, G., Peak, D. and Schoenau, J. J. Spatial Distribution and Chemical Speciation of Soil Phosphorus in a Band Application. Soil Science Society of America Journal, 76, 6 (Nov-Dec 2012), 2297-2306.

[9] Berkhout, E. D., Schipper, R. A., Van Keulen, H. and Coulibaly, O. Heterogeneity in farmers' production decisions and its impact on soil nutrient use: Results and implications from northern Nigeria. Agricultural Systems, 104, 1 (Jan 2011), 63-74.

[10] Hessen, D. O., Faerovig, P. J. and Andersen, T. Light, nutrients, and P : C ratios in algae: Grazer performance related to food quality and quantity. Ecology, 83, 7 (Jul 2002), 1886-1898.

[11] Bennett, E. M., Carpenter, S. R. and Caraco, N. F. Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience, 51, 3 (Mar 2001), 227-234.

[12] Zhang, S. L., Huffman, T., Zhang, X. Y., Liu, W. and Liu, Z. H. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. Journal of Soils and Sediments, 14, 11 (Nov 2014), 1775-1789.

[13] Zhang, S. L., Huang, J., Wang, Y., Shen, Q. S., Mu, L. L. and Liu, Z. H. Spatiotemporal Heterogeneity of Soil Available Nitrogen During Crop Growth Stages on Mollisol Slopes of Northeast China. Land Degradation & Development, 28, 3 (2017), 856-869.

[14] Bhatta, G. D., Ojha, H. R., Aggarwal, P. K., Sulaiman, V. R., Sultana, P., Thapa, D., Mittal, N., Dahal, K., Thomson, P. and Ghimire, L. Agricultural innovation and adaptation to climate change: empirical evidence from diverse agro-ecologies in South Asia. Environment Development and Sustainability, 19, 2 (Apr 2017), 497-525.

[15] Koundouri, P., Nauges, C. and Tzouvelekas, V. Technology adoption under production uncertainty: Theory and application to irrigation technology. American Journal of Agricultural Economics, 88, 3 (Aug 2006), 657-670.


[17] Cordell, D., Drangert, J. O. and White, S. The story of phosphorus: Global food security and food for thought. Global Environmental Change-Human and Policy Dimensions, 19, 2 (May 2009), 292-305.

[18] Zhao, X., Wang, S. Q. and Xing, G. X. Maintaining rice yield and reducing N pollution by substituting winter legume for wheat in a heavily-fertilized rice-based cropping system of southeast China. Agriculture Ecosystems & Environment, 202 (Apr 2015), 79-89.

[19] Zhao, S. C., Qiu, S. J., Cao, C. Y., Zheng, C. L., Zhou, W. and He, P. Responses of soil properties, microbial community and crop yields to various rates of nitrogen fertilization in a wheat-maize cropping system in north-central China. Agriculture Ecosystems & Environment, 194 (Sep 2014), 29-37.

[20] Blair, B. Effect of soil nutrient heterogeneity on the symmetry of belowground competition. Plant Ecology, 156, 2 (2001), 199-203.

[21] Bedison, J. E. and Johnson, A. H. Controls on the Spatial Patterns of Carbon and Nitrogen in Adirondack Forest Soils along a Gradient of Nitrogen Deposition. Soil Science Society of America Journal, 73, 6 (Nov-Dec 2009), 2105-2117.

[22] Hu, K. L., Wang, S. Y., Li, H., Huang, F. and Li, B. G. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Geoderma, 226 (Aug 2014), 54-63.

[23] Chen, C., Pan, J. J. and Lam, S. K. A review of precision fertilization research. Environmental Earth Sciences, 71, 9 (May 2014), 4073-4080.

[24] Clostre, F., Lesueur-Jannoyer, M., Achard, R., Letourmy, P., Cabidoche, Y. M. and Cattan, P. Decision support tool for soil sampling of heterogeneous pesticide (chlordecone) pollution. Environmental Science and Pollution Research, 21, 3 (Feb 2014), 1980-1992.

[25] Liu, S. L., An, N. N., Yang, J. J., Dong, S. K., Wang, C. and Yin, Y. J. Prediction of soil organic matter variability associated with different land use types in mountainous landscape in southwestern Yunnan province, China. Catena, 133 (Oct 2015), 137-144.

[26] Liu, W. J., Su, Y. Z., Yang, R., Yang, Q. and Fan, G. P. Temporal and spatial variability of soil organic matter and total nitrogen in a typical oasis cropland ecosystem in arid region of Northwest China. Environmental Earth Sciences, 64, 8 (Dec 2011), 2247-2257.

[27] Rivard, C., Lanson, B. and Cotte, M. [plant and soil] Phosphorus speciation and micro-scale spatial distribution in North-American temperate agricultural soils from micro X-ray fluorescence and X-ray absorption near-edge spectroscopy. Plant and Soil, 401, 1-2 (Apr 2016), 7-22.

[28] Mabit, L., Bernard, C., Makhlouf, M. and Laverdiere, M. R. [i]Spatial variability of erosion and soil organic matter content estimated from Cs-131 measurements and geostatistics. Geoderma, 145, 3-4 (Jun 2008), 245-251.

[29] Kim, D. G., Rafique, R., Leahy, P., Cochrane, M. and Kiely, G. Estimating the impact of changing fertilizer application rate, land use, and climate on nitrous oxide emissions in Irish grasslands. Plant and Soil, 374, 1-2 (Jan 2014), 55-71.

[30] Pan, Y., Cassman, N., de Hollander, M., Mendes, L. W., Korevaar, H., Geerts, R., van Veen, J. A. and Kuramae, E. E. Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. Fems Microbiology Ecology, 90, 1 (Oct 2014), 195-205.

[31] Zhang, S. L., Zhang, X. Y., Liu, X. B., Liu, W. and Liu, Z. H. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available potassium. Nutrient Cycling in Agroecosystems, 95, 3 (Apr 2013), 319-331.

[32] Xu, G. C., Li, Z. B., Li, P., Zhang, T. G. and Cheng, S. D. Spatial variability of soil available phosphorus in a typical watershed in the source area of the middle Dan River, China. Environmental Earth Sciences, 71, 9 (May 2014), 3953-3962.

[33] Zhang, S. L., Zhang, X. Y., Huffman, T., Liu, X. B. and Yang, J. Y. Influence of topography and land management on soil nutrients variability in Northeast China. Nutrient Cycling in Agroecosystems, 89, 3 (Apr 2011), 427-438.

[34] Roger, A., Libohova, Z., Rossier, N., Joost, S., Maltas, A., Frossard, E. and Sinaj, S. Spatial variability of soil phosphorus in the Fribourg canton, Switzerland. Geoderma, 217 (Apr 2014), 26-36.

[35] Gou, Y., Chen, H., Wu, W. and Liu, H. B. Effects of slope position, aspect and cropping system on soil nutrient variability in hilly areas. Soil Research, 53, 3 (2015), 338-348.

[36] Zingore, S., Murwira, H. K., Delve, R. J. and Giller, K. E. Influence of nutrient management strategies on variability of soil fertility, crop yields and nutrient balances on smallholder farms in Zimbabwe. Agriculture Ecosystems & Environment, 119, 1-2 (Feb 2007), 112-126.

[37] Mao, Y. M., Sang, S. X., Liu, S. Q. and Jia, J. L. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China. Comptes Rendus Biologies, 337, 5 (May 2014), 332-337.

[38] Cheng, Y. T., Li, P., Xu, G. C., Li, Z. B., Cheng, S. D. and Gao, H. D. Spatial distribution of soil total phosphorus in Yingwugou watershed of the Dan River, China. Catena, 136 (Jan 2016), 175-181.

[39] Bao, Z., Wu, W. Y., Liu, H. L., Yin, S. Y. and Chen, H. H. Geostatistical analyses of spatial distribution and origin of soil nutrients in long-term wastewater-irrigated area in Beijing, China. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 64, 3 (Apr 2014), 235-243.

[40] Zhang, S. L., Zhang, X. Y., Liu, Z. H., Sun, Y. K., Liu, W., Dai, L. and Fu, S. C. Spatial heterogeneity of soil organic matter and soil total nitrogen in a Mollisol watershed of Northeast China. Environmental Earth Sciences, 72, 1 (Jul 2014), 275-288.

[41] Lin, J. S., Shi, X. Z., Lu, X. X., Yu, D. S., Wang, H. J., Zhao, Y. C. and Sun, W. X. Storage and Spatial Variation of Phosphorus in Paddy Soils of China. Pedosphere, 19, 6 (Dec 2009), 790-798.

[42] Liu, Z. P., Shao, M. A. and Wang, Y. Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma, 197 (Apr 2013), 67-78.

[43] Wang, Y. Q., Zhang, X. C. and Huang, C. Q. Spatial variability of soil total nitrogen and soil total phosphorus under different land uses in a small watershed on the Loess Plateau, China. Geoderma, 150, 1-2 (Apr 2009), 141-149.

[44] Liu, Y., Lv, J. S., Zhang, B. and Bi, J. Spatial multi-scale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Science of the Total Environment, 450 (Apr 2013), 108-119.

[45] Zhang, Z. M., Yu, X. X., Qian, S. and Li, J. W. Spatial variability of soil nitrogen and phosphorus of a mixed forest ecosystem in Beijing, China. Environmental Earth Sciences, 60, 8 (Jun 2010), 1783-1792.

[46] Hirobe, M., Tokuchi, N. and Iwatsubo, G. Spatial variability of soil nitrogen transformation patterns along a forest slope in a Cryptomeria japonica D. Don plantation. European Journal of Soil Biology, 34, 3 (Jul-Sep 1998), 123-131.

[47] Huang, B., Sun, W. X., Zhao, Y. C., Zhu, J., Yang, R. Q., Zou, Z., Ding, F. and Su, J. P. Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma, 139, 3-4 (May 2007), 336-345.

[48] Huang, S. W., Jin, J. Y., Yang, L. P. and Bai, Y. L. Spatial variability of soil nutrients and influencing factors in a vegetable production area of Hebei Province in China. Nutrient Cycling in Agroecosystems, 75, 1-3 (Jul 2006), 201-212.

[49] Gao, R. T., Liu, S. Q., Zhang, Y. G., Li, H. Z., Huang, Y. F., Xia, X. F., Jiang, T. T. and Zhang, H. Temporal-spatial variability and fractal characteristics of soil nitrogen and phosphorus in Xinji District, Hebei Province, China. Environmental Monitoring and Assessment, 174, 1-4 (Mar 2011), 229-240.

[50] Rodriguez, A., Duran, J., Fernandez-Palacios, J. M. and Gallardo, A. Wildfire changes the spatial pattern of soil nutrient availability in Pinus canariensis forests. Annals of Forest Science, 66, 2 (Mar 2009).

[51] Ruffo, M. L., Bollero, G. A., Hoeft, R. G. and Bullock, D. G. Spatial variability of the Illinois Soil Nitrogen Test: Implications for soil sampling. Agronomy Journal, 97, 6 (Nov-Dec 2005), 1485-1492.

[52] Bennett, E. M., Carpenter, S. R. and Clayton, M. K. Soil phosphorus variability: scale-dependence in an urbanizing agricultural landscape. Landscape Ecology, 20, 4 (May 2005), 389-400.

[53] Flowers, M., Weisz, R. and White, J. G. Yield-based management zones and grid sampling strategies: Describing soil test and nutrient variability. Agronomy Journal, 97, 3 (May-Jun 2005), 968-982.

[54] Cordova, C., Sohi, S. P., Lark, R. M., Goulding, K. W. T. and Robinson, J. S. Resolving the spatial variability of soil N using fractions of soil organic matter. Agriculture Ecosystems & Environment, 147 (Jan 2012), 66-72.

[55] Grandt, S., Ketterings, Q. M., Lembo, A. J. and Vermeylen, F. In-Field Variability of Soil Test Phosphorus and Implications for Agronomic and Environmental Phosphorus Management. Soil Science Society of America Journal, 74, 5 (Sep-Oct 2010), 1800-1807.

[56] Hu, Z. Y., Haneklaus, S., Liu, Q., Xu, C. K., Cao, Z. H. and Schnug, E. Small-scale spatial variability of phosphorus in a paddy soil. Communications in Soil Science and Plant Analysis, 34, 19-20 (2003), 2791-2801.

[57] Liu, X. M., Zhao, K. L., Xu, J. M., Zhang, M. H., Si, B. and Wang, F. Spatial variability of soil organic matter and nutrients in paddy fields at various scales in southeast China. Environmental Geology, 53, 5 (Jan 2008), 1139-1147.

[58] Li, Y. L., Kronzucker, H. J. and Shi, W. M. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale. Scientific Reports, 6 (Jun 2016).

[59] Rubaek, G. H., Kristensen, K., Olesen, S. E., Ostergaard, H. S. and Heckrath, G. Phosphorus accumulation and spatial distribution in agricultural soils in Denmark. Geoderma, 209 (Nov 2013), 241-250.

[60] Lehmann, J., Kinyangi, J. and Solomon, D. Organic matter stabilization in soil microaggregates: implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry, 85, 1 (Aug 2007), 45-57.

[61] Pye, K., Blott, S. J., Croft, D. J. and Carter, J. F. Forensic comparison of soil samples: Assessment of small-scale spatial variability in elemental composition, carbon and nitrogen isotope ratios, colour, and particle size distribution. Forensic Science International, 163, 1-2 (Nov 2006), 59-80.

[62] Wang, L. X., Okin, G. S., D'Odorico, P., Caylor, K. K. and Macko, S. A. Ecosystem-scale spatial heterogeneity of stable isotopes of soil nitrogen in African savannas. Landscape Ecology, 28, 4 (Apr 2013), 685-698.

[63] Hirobe, M., Kondo, J., Enkhbaatar, A., Amartuvshin, N., Fujita, N., Sakamoto, K., Yoshikawa, K. and Kielland, K. Effects of livestock grazing on the spatial heterogeneity of net soil nitrogen mineralization in three types of Mongolian grasslands. Journal of Soils and Sediments, 13, 7 (Aug 2013), 1123-1132.

[64] Ma, L. M., Yuan, J., Sun, X. J. and Zhang, M. Spatial distribution and release of nitrogen in soils in the water fluctuation zone of the Three Gorges Reservoir. Journal of Food Agriculture & Environment, 10, 1 (Jan 2012), 787-791.

[65] Bai, J. H., Hua, O. Y., Wei, D., Zhu, Y. M., Zhang, X. L. and Wang, Q. G. Spatial distribution characteristics of organic matter and total nitrogen of marsh soils in river marginal wetlands. Geoderma, 124, 1-2 (Jan 2005), 181-192.

[66] Pracilio, G., Adams, M. L., Smettem, K. R. J. and Harper, R. J. Determination of spatial distribution patterns of clay and plant available potassium contents in surface soils at the farm scale using high resolution gamma ray spectrometry. Plant and Soil, 282, 1-2 (Apr 2006), 67-82.

[67] Wang, X. B., Zhou, B. Y., Sun, X. F., Yue, Y., Ma, W. and Zhao, M. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status. Plos One, 10, 6 (Jun 2015).

[68] Uriarte, M., Turner, B. L., Thompson, J. and Zimmerman,J. K. Linking spatial patterns of leaf litterfall and soil nutrients in a tropical forest: a neighborhood approach. Ecological Applications, 25, 7 (Oct 2015), 2022-2034.

[69] Yuan, F., Wu, J. G., Li, A., Rowe, H., Bai, Y. F., Huang, J. H. and Han, X. G. Spatial patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner Mongolia grassland: before and after a biodiversity removal experiment. Landscape Ecology, 30, 9 (Nov 2015), 1737-1750.

[70] Wang, J. M., Yang, R. X. and Bai, Z. K. Spatial variability and sampling optimization of soil organic carbon and total nitrogen for Minesoils of the Loess Plateau using geostatistics. Ecological Engineering, 82 (Sep 2015), 159-164.

[71] Prasolova, N. V., Xu, Z. H., Saffigna, P. G. and Dieters, M. J. Spatial-temporal variability of soil moisture, nitrogen availability indices and other chemical properties in hoop pine (Araucaria cunninghamii) plantations of subtropical Australia. Forest Ecology and Management, 136, 1-3 (Oct 2000), 1-10.

[72] Rethemeyer, J., Grootes, P. M., Bruhn, F., Andersen, N., Nadeau, M. J., Kramer, C. and Gleixner, G. [C14]Age heterogeneity of soil organic matter. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 223 (Aug 2004), 521-527.

[73] Zebarth, B. J., Younie, M. F., Paul, J. W., Hall, J. W. and Telford, G. A. Fertilizer banding influence on spatial and temporal distribution of soil inorganic nitrogen in a corn field. Soil Science Society of America Journal, 63, 6 (NovDec 1999), 1924-1933.

[74] Zhao, Y. C., Xu, X. H., Darilek, J. L., Huang, B., Sun, W. X. and Shi, X. Z. Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China. Environmental Geology, 57, 5 (May 2009), 1089-1102.

[75] Zhang, S. L., Yan, L. L., Huang, J., Mu, L. L., Huang, Y. Q., Zhang, X. Y. and Sun, Y. K. Spatial Heterogeneity of Soil C:N Ratio in a Mollisol Watershed of Northeast China. Land Degradation & Development, 27, 2 (Feb 2016), 295-304.

[76] Robertson, G. P. GS+: Geostatistics for the Environmental Sciences. Gamma Design Software. Plainwell, Michigan USA, 2008.

[77] ESRI ArcGIS Desktop: Release 10, Redlands, CA: Environmental Systems Research Institute., 2011.

[78] Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F. and Konopka, A. E. FIELD-SCALE VARIABILITY OF SOIL PROPERTIES IN CENTRAL IOWA SOILS. Soil Science Society of America Journal, 58, 5 (Sep-Oct 1994), 1501-1511.

[79] Iqbal, J., Thomasson, J. A., Jenkins, J. N., Owens, P. R. and Whisler, F. D. Spatial variability analysis of soil physical properties of alluvial soils. Soil Science Society of America Journal, 69, 4 (Jul-Aug 2005), 1338-1350.

[80] Yang, R., Su, Y. Z., Gan, Y. T., Du, M. W. and Wang, M. Field-scale spatial distribution characteristics of soil nutrients in a newly reclaimed sandy cropland in the Hexi Corridor of Northwest China. Environmental Earth Sciences, 70, 7 (Dec 2013), 2987-2996.

[81] Moran, P. A. P. NOTES ON CONTINUOUS STOCHASTIC PHENOMENA. Biometrika, 37, 1-2 (1950), 17-23.

[82] Bruland, G. L. and Richardson, C. J. Spatial variability of soil properties in created, restored, and paired natural wetlands. Soil Science Society of America Journal, 69, 1 (JanFeb 2005), 273-284.

[83] Sharmasarkar, F. C., Sharmasarkar, S., Zhang, R. D., Vance, G. F. and Miller, S. D. Micro-spatial variability of soil nitrate following nitrogen fertilization and drip irrigation. Water Air and Soil Pollution, 116, 3-4 (Dec 1999), 605-619.

[84] Rivero, R. G., Grunwald, S. and Bruland, G. L. Incorporation of spectral data into multivariate geostatistical models to map soil phosphorus variability in a Florida wetland. Geoderma, 140, 4 (Aug 2007), 428-443.

[85] Wang, K., Zhang, C. R. and Li, W. D. Comparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter. Giscience & Remote Sensing, 49, 6 (Nov-Dec 2012), 915-932.

[86] Grunwald, S., Reddy, K. R., Newman, S. and DeBusk, W. F. Spatial variability, distribution and uncertainty assessment of soil phosphorus in a south Florida wetland. Environmetrics, 15, 8 (Dec 2004), 811-825.

[87] Feeley, K. The role of clumped defecation in the spatial distribution of soil nutrients and the availability of nutrients for plant uptake. Journal of Tropical Ecology, 21 (Jan 2005), 99-102.

[88] Mabit, L. and Bernard, C. Spatial distribution and content of soil organic matter in an agricultural field in eastern Canada, as estimated from geostatistical tools. Earth Surface Processes and Landforms, 35, 3 (Mar 2010), 278-283.

[89] Chai, X. R., Huang, Y. F. and Yuan, X. Y. Accuracy and uncertainty of spatial patterns of soil organic matter. New Zealand Journal of Agricultural Research, 50, 5 (Dec 2007), 1141-1148.

[90] Kumar, S. and Singh, R. P. Spatial distribution of soil nutrients in a watershed of Himalayan landscape using terrain attributes and geostatistical methods. Environmental Earth Sciences, 75, 6 (Mar 2016).

[91] Haileslassie, A., Priess, J., Veldkamp, E., Teketay, D. and Lesschen, J. P. Assessment of soil nutrient depletion and its spatial variability on smallholders' mixed farming systems in Ethiopia using partial versus full nutrient balances. Agriculture Ecosystems & Environment, 108, 1 (Jun 2005), 1-16.

[92] Pan, H. W., Lei, H. J., Han, Y. P., Xi, B. D., He, X. S.,Xu, Q. G., Li, D. and Song, C. H. Analysis of Spatial Distribution Characteristics of Dissolved Organic Matter in Typical Greenhouse Soil of Northern China Using Three Dimensional Fluorescence Spectra Technique and Parallel Factor Analysis Model. Spectroscopy and Spectral Analysis, 34, 6 (Jun 2014), 1582-1588.

[93] Baas, P., Mohan, J. E., Markewitz, D. and Knoepp, J. D. Assessing Heterogeneity in Soil Nitrogen Cycling: A PlotScale Approach. Soil Science Society of America Journal, 78 (2014), S237-S247.

[94] Mirzaee, S., Ghorbani-Dashtaki, S., Mohammadi, J., Asadi, H. and Asadzadeh, F. Spatial variability of soil organic matter using remote sensing data. Catena, 145 (Oct 2016), 118-127.

[95] Wang, Z. M., Song, K. S., Zhang, B., Liu, D. W., Li, X. Y., Ren, C. Y., Zhang, S. M., Luo, L. and Zhang, C. H. Spatial variability and affecting factors of soil nutrients in croplands of Northeast China: a case study in Dehui County. Plant Soil and Environment, 55, 3 (Mar 2009), 110-120.

[96] Pebesma, E. J. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30, 7 (Aug 2004), 683-691.

[97] Singh, S., Singh, A., Rajkumar, R., Kumar, K. S., Samy, S. K., Nizamuddin, S., Singh, A., Sheikh, S. A., Peddada, V., Khanna, V., Veeraiah, P., Pandit, A., Chaubey, G., Singh, L. and Thangaraj, K. Dissecting the influence of Neolithic demic diffusion on Indian Y-chromosome pool through J2- M172 haplogroup. Scientific Reports, 6 (Jan 2016).

[98] Klingenberger, M., Hirsch, O. and Votsmeier, M. Efficient interpolation of precomputed kinetic data employing reduced multivariate Hermite Splines. Computers & Chemical Engineering, 98 (Mar 2017), 21-30.

[99] Darrouzet-Nardi, A. Landscape Heterogeneity of Differently Aged Soil Organic Matter Constituents at the Forest-Alpine Tundra Ecotone, Niwot Ridge, Colorado, USA. Arctic Antarctic and Alpine Research, 42, 2 (May 2010), 179-187.

[100] Gilliam, F. S. and Dick, D. A. Spatial heterogeneity of soil nutrients and plant species in herb-dominated communities of contrasting land use. Plant Ecology, 209, 1 (Jul 2010), 83-94.

[101] Hu, K. L., Li, H., Li, B. G. and Huang, Y. F. Spatial and temporal patterns of soil organic matter in the urban-rural transition zone of Beijing. Geoderma, 141, 3-4 (Oct 2007), 302-310.

[102] Ruckamp, D., Martius, C., Bornemann, L., Kurzatkowski, D., Naval, L. P. and Amelung, W. Soil genesis and heterogeneity of phosphorus forms and carbon below mounds inhabited by primary and secondary termites. Geoderma, 170 (Jan 2012), 239-250.

[103] Papamichail, D. M. and Metaxa, I. G. Geostatistical Analysis of Spatial Variability of Rainfall and Optimal Design of a Rain Gauge Network. Water Resources Management, 10, 2 (Apr 1996), 107-127.

[104] Wilson, H. F., Satchithanantham, S., Moulin, A. P. and Glenn, A. J. Soil phosphorus spatial variability due to landform, tillage, and input management: A case study of small watersheds in southwestern Manitoba. Geoderma, 280 (Oct 2016), 14-21.

[105] Guerin, J. E., Parent, L. E. and Si, B. C. Spatial and seasonal variability of phosphorus risk indexes in cultivated organic soils. Canadian Journal of Soil Science, 91, 2 (May 2011), 291-302.

[106] Li, J., Okin, G. S., Alvarez, L. and Epstein, H. Effects of wind erosion on the spatial heterogeneity of soil nutrients in two desert grassland communities. Biogeochemistry, 88, 1 (Mar 2008), 73-88.

[107] Abuduwaili, J., Tang, Y., Abulimiti, M., Liu, D. W. and Ma, L. Spatial distribution of soil moisture, salinity and organic matter in Manas River watershed, Xinjiang, China. Journal of Arid Land, 4, 4 (Dec 2012), 441-449.

[108] Zhang, X. Y., Sui, Y. Y., Zhang, X. D., Meng, K. and Herbert, S. J. Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17, 1 (Feb 2007), 19- 29.

[109] Bai, J. H., Wang, J. J., Yan, D. H., Gao, H. F., Xiao, R., Shao, H. B. and Ding, Q. Y. Spatial and Temporal Distributions of Soil Organic Carbon and Total Nitrogen in Two Marsh Wetlands with Different Flooding Frequencies of the Yellow River Delta, China. Clean-Soil Air Water, 40, 10 (Oct 2012), 1137-1144.

[110] Kolbl, A., Mueller-Niggemann, C., Schwark, L., Cao, Z. H. and Kogel-Knabner, I. Spatial distribution of soil organic matter in two fields on tidal flat sediments (Zhejiang Province, China) differing in duration of paddy management. Journal of Plant Nutrition and Soil Science, 178, 4 (Aug 2015), 649-657.

[111] Chen, Q. Q., Shen, C. D., Sun, Y. M., Peng, S. L., Yi, W. X., Li, Z. A. and Jiang, M. T. Spatial and temporal distribution of carbon isotopes in soil organic matter at the Dinghushan Biosphere Reserve, South China. Plant and Soil, 273, 1-2 (Jun 2005), 115-128.

[112] Drahorad, S., Felix-Henningsen, P., Eckhardt, K. U. and Leinweber, P. Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. Journal of Arid Environments, 94 (Jul 2013), 18-26.

[113] Han, F. P., Zheng, J. Y., Hu, W., Du, F. and Zhang, X. C. Spatial variability and distribution of soil nutrients in a catchment of the Loess Plateau in China. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 60, 1 (2010), 48-56.

[114] Chen, T., Chang, Q. R., Liu, J. and Clevers, J. Spatio-temporal variability of farmland soil organic matter and total nitrogen in the southern Loess Plateau, China: a case study in Heyang County. Environmental Earth Sciences, 75, 1 (Jan 2016).

[115] Wang, Y. H., Zhang, L. and Haimiti, Y. Study on Spatial Variability of Soil Nutrients in Ebinur Lake Wetlands in China. Journal of Coastal Research (Win 2015), 59-63.

[116] Newman, S., Reddy, K. R., DeBusk, W. F., Wang, Y., Shih, G. and Fisher, M. M. Spatial distribution of soil nutrients in a northern Everglades marsh: Water conservation area 1. Soil Science Society of America Journal, 61, 4 (Jul-Aug 1997), 1275-1283.

[117] Ye, X. F., Bai, J. H., Lu, Q. Q., Zhao, Q. Q. and Wang, J. J. Spatial and seasonal distributions of soil phosphorus in a typical seasonal flooding wetland of the Yellow River Delta, China. Environmental Earth Sciences, 71, 11 (Jun 2014), 4811-4820.

[118] Stipek, K., Vanek, V., Szakova, J., Cerny, J. and Silha, J. Temporal variability of available phosphorus, potassium and magnesium in arable soil. Plant Soil and Environment, 50, 12 (Dec 2004), 547-551.

[119] Jalali, M. Spatial variability in potassium release among calcareous soils of western Iran. Geoderma, 140, 1-2 (Jun 2007), 42-51.

[120] Gallardo, A. Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean Dehesa. Pedobiologia, 47, 2 (2003), 117-125.

[121] Zhang, S. L. and Zhang, X. Y. The influence of spatial resolution on the prediction of soil organic matter distribution in a Mollisol watershed of Northeast China. Nature Environment and Pollution Technology, 13, 4 (2014 ), 7.

[122] Xu, L. F., Zhou, P., Han, Q. F., Li, Z. H., Yang, B. P. and Nie, J. F. Spatial Distribution of Soil Organic Matter and Nutrients in the Pear Orchard Under Clean and Sod Cultivation Models. Journal of Integrative Agriculture, 12, 2 (2013), 344-351.

[123] Dong, X. W., Zhang, X. K., Bao, X. L. and Wang, J. K. Spatial distribution of soil nutrients after the establishment of sand-fixing shrubs on sand dune. Plant Soil and Environment, 55, 7 (Jul 2009), 288-294.

[124] Li, Q. X., Jia, Z. Q., Zhu, Y. J., Wang, Y. S., Li, H., Yang, D. F. and Zhao, X. B. Spatial Heterogeneity of Soil Nutrients after the Establishment of Caragana intermedia Plantation on Sand Dunes in Alpine Sandy Land of the Tibet Plateau. Plos One, 10, 5 (May 2015).

[125] Marchetti, A., Piccini, C., Francaviglia, R. and Mabit, L. Spatial Distribution of Soil Organic Matter Using Geostatistics: A Key Indicator to Assess Soil Degradation Status in Central Italy. Pedosphere, 22, 2 (Apr 2012), 230-242.

[126] Zhang, S. L., Liu, W., Zhang, X. Y., Liu, S., Li, X. F. and Li, H. Spatial pattern prediction of soil erosion in small typical watersheds in black earth Region. Bulletin of Soil and water conservation, 4, 19 (2013), 5.

[127] Gaubi, I., Chaabani, A., Ben Mammou, A. and Hamza, M. H. A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, 86, 1 (Mar 2017), 219-239.

[128] Zhang, Y., Degroote, J., Wolter, C. and Sugumaran, R. INTEGRATION OF MODIFIED UNIVERSAL SOIL LOSS EQUATION (MUSLE) INTO A GIS FRAMEWORK TO ASSESS SOIL EROSION RISK. Land Degradation & Development, 20, 1 (Jan-Feb 2009), 84-91.

[129] Wang, H. J., Shi, X. Z., Yu, D. S., Weindorf, D. C., Huang, B., Sun, W. X., Ritsema, C. J. and Milne, E. Factors determining soil nutrient distribution in a small-scaled watershed in the purple soil region of Sichuan Province, China. Soil & Tillage Research, 105, 2 (Nov 2009), 300-306.

[130] Zhang, S. L., Jiang, L. L., Liu, X. B., Zhang, X. Y., Fu, S. C. and Dai, L. Soil nutrient variance by slope position in a Mollisol farmland area of Northeast China. Chinese Geographical Science, 26, 4 (Aug 2016), 508-517.

[131] Zuo, X. A., Zhao, X. Y., Zhao, H. L., Guo, Y. R., Zhang, T. H. and Cui, J. Y. Spatial pattern and heterogeneity of soil organic carbon and nitrogen in sand dunes related to vegetation change and geomorphic position in Horqin Sandy Land, Northern China. Environmental Monitoring and Assessment, 164, 1-4 (May 2010), 29-42.

[132] Sigua, G. C., Coleman, S. W., Albano, J. and Williams, M. Spatial distribution of soil phosphorus and herbage mass in beef cattle pastures: effects of slope aspect and slope position. Nutrient Cycling in Agroecosystems, 89, 1 (Jan 2011), 59-70.

[133] Araujo, M. S. B., Schaefer, C. E. R. and Sampaio, E. Soil phosphorus fractions from toposequences of semi-arid Latosols and Luvisols in northeastern Brazil. Geoderma, 119, 3-4 (Apr 2004), 309-321.

[134] Gao, P., Wang, B., Geng, G. P. and Zhang, G. C. Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China. Plos One, 8, 12 (Dec 2013).

[135] Zhang, S. R., Xia, C. L., Li, T., Wu, C. G., Deng, O. P., Zhong, Q. M., Xu, X. X., Li, Y. and Jia, Y. X. Spatial variability of soil nitrogen in a hilly valley: Multiscale patterns and affecting factors. Science of the Total Environment, 563 (Sep 2016), 10-18.

[136] Page, T., Haygarth, P. M., Beven, K. J., Joynes, A., Butler, T., Keeler, C., Freer, J., Owens, P. N. and Wood, G. A. Spatial variability of soil phosphorus in relation to the topographic index and critical source areas: Sampling for assessing risk to water quality. Journal of Environmental Quality, 34, 6 (Nov-Dec 2005), 2263-2277.

[137] Schmidt, M. G., Schreier, H. and Shah, P. B. FACTORS AFFECTING THE NUTRIENT STATUS OF FOREST SITES IN A MOUNTAIN WATERSHED IN NEPAL. Journal of Soil Science, 44, 3 (Sep 1993), 417-425.

[138] Rodionov, A., Flessa, H., Grabe, M., Kazansky, O. A., Shibistova, O. and Guggenberger, G. Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone. European Journal of Soil Science, 58, 6 (Dec 2007), 1260-1272.

[139] Li, J. R., Okin, G. S., Alvarez, L. J. and Epstein, H. E. Sediment deposition and soil nutrient heterogeneity in two desert grassland ecosystems, southern New Mexico. Plant and Soil, 319, 1-2 (Jun 2009), 67-84.

[140] Song, Y., Zou, Y. C., Wang, G. P. and Yu, X. F. Altered soil carbon and nitrogen cycles due to the freeze-thaw effect: A meta-analysis. Soil Biology & Biochemistry, 109 (Jun 2017), 35-49.

[141] Wang, T., Li, P., Ren, Z. P., Xu, G. C., Li, Z. B., Yang, Y. Y., Tang, S. S. and Yao, J. W. Effects of freeze-thaw on soil erosion processes and sediment selectivity under simulated rainfall. Journal of Arid Land, 9, 2 (Apr 2017), 234-243.

[142] Fan, Z. P., Tu, Z. H., Li, F. Y., Qin, Y. B., Deng, D. Z., Zeng, D. H., Sun, X. K., Zhao, Q. and Hu, Y. L. Experimental Manipulation of Precipitation Affects Soil Nitrogen Availability in Semiarid Mongolian Pine (Pinus sylvestris var. mongolica) Plantation. Water, 9, 3 (Mar 2017).

[143] Morgan, J. W., Dwyer, J., Price, J. N., Prober, S. M., Power, S. A., Firn, J., Moore, J. L., Wardle, G., Seabloom, E. W., Borer, E. T. and Camac, J. S. Species origin affects the rate of response to inter-annual growing season precipitation and nutrient addition in four Australian native grasslands. Journal of Vegetation Science, 27, 6 (Nov 2016), 1164-1176.

[144] Shiba, N. C. and Ntuli, F. Extraction and precipitation of phosphorus from sewage sludge. Waste Management, 60 (Feb 2017), 191-200.

[145] Maester, F. T. and Reynolds, J. F. Spatial heterogeneity in soil nutrient supply modulates nutrient and biomass responses to multiple global change drivers in model grassland communities. Global Change Biology, 12, 12 (2006), 11.

[146] Lai, R. Soil erosion and the global carbon budget. Environment International, 29, 4 (2003), 14.

[147] Garcia-Palacios, P., Maestre, F. T., Bardgett, R. D. and Kroon, H. Plant responses to soil heterogeneity and global environmental change. Journal of Ecology, 100, 6 (2012), 12.

[148] de Carvalho, L. A., Meurer, I., da Silva, C. A., Santos, C. F. B. and Libardi, P. L. Spatial variability of soil potassium in sugarcane areas subjected to the application of vinasse. Anais Da Academia Brasileira De Ciencias, 86, 4 (Dec 2014), 1999-2011.

[149] Xiao, R., Bai, J. H., Gao, H. F., Huang, L. B. and Deng, W. Spatial distribution of phosphorus in marsh soils of a typical land/inland water ecotone along a hydrological gradient. Catena, 98 (Nov 2012), 96-103.

[150] Legout, A., Walter, C. and Nys, C. Spatial variability of nutrient stocks in the humus and soils of a forest massif (Fougeres, France). Annals of Forest Science, 65, 1 (Jan-Feb 2008).

[151] Penn, C. J., Bryant, R. B., Needelman, B. and Kleinman, P. Spatial distribution of soil phosphorus across selected new york dairy farm pastures and hay fields. Soil Science, 172, 10 (Oct 2007), 797-810.

[152] Franzluebbers, A. J., Stuedemann, J. A. and Schomberg, H. H. Spatial distribution of soil carbon and nitrogen pools under grazed tall fescue. Soil Science Society of America Journal, 64, 2 (Mar-Apr 2000), 635-639.

[153] Yang, X. L., Zhu, B. and Li, Y. L. Spatial and temporal patterns of soil nitrogen distribution under different land uses in a watershed in the hilly area of purple soil, China. Journal of Mountain Science, 10, 3 (Jun 2013), 410-417.

[154] Zheng, L., Wu, W. L., Wei, Y. P. and Hu, K. L. Effects of straw return and regional factors on spatio-temporal variability of soil organic matter in a high-yielding area of northern China. Soil & Tillage Research, 145 (Jan 2015), 78-86.

[155] Sato, S., Morgan, K. T., Ozores-Hampton, M. and Simonne, E. H. Spatial and Temporal Distributions in Sandy Soils with Seepage Irrigation: I. Ammonium and Nitrate. Soil Science Society of America Journal, 73, 4 (Jul-Aug 2009), 1440-1440.

[156] Wall, D. P., Weisz, R., Crozier, C. R., Heiniger, R. W. and White, J. G. Variability of the Illinois Soil Nitrogen Test across Time and Sampling Depth. Soil Science Society of America Journal, 74, 6 (Nov-Dec 2010), 2089-2100.

[157] Aguilar, R., Hormazabal, C., Gaete, H. and Neaman, A. Spatial distribution of copper, organic matter and pH in agricultural soils affected by mining activities. Journal of Soil Science and Plant Nutrition, 11, 3 (2011), 125-145.

[158] Nyamadzawo, G., Shukla, M. K. and Lal, R. Spatial variability of total soil carbon and nitrogen stocks for some reclaimed minesoils of Southeastern Ohio. Land Degradation & Development, 19, 3 (May-Jun 2008), 275-288.

[159] Gourley, C. J. P., Aarons, S. R., Hannah, M. C., Awty, I. M., Dougherty, W. J. and Burkitt, L. L. Soil phosphorus, potassium and sulphur excesses, regularities and heterogeneity in grazing-based dairy farms. Agriculture Ecosystems & Environment, 201 (Mar 2015), 70-82.

[160] Boerner, R. E. J., Morris, S. J., Sutherland, E. K. and Hutchinson, T. F. Spatial variability in soil nitrogen dynamics after prescribed burning in Ohio mixed-oak forests. Landscape Ecology, 15, 5 (Jul 2000), 425-439.

[161] Lopez-Martin, M., Velasco-Molina, M. and Knicker, H. Variability of the quality and quantity of organic matter in soil affected by multiple wildfires. Journal of Soils and Sediments, 16, 2 (Feb 2016), 360-370.

[162] Lane, D. R. and BassiriRad, H. Diminishing spatial heterogeneity in soil organic matter across a prairie restoration chronosequence. Restoration Ecology, 13, 2 (Jun 2005), 403-412.

[163] Okin, G. S., Mladenov, N., Wang, L., Cassel, D., Caylor, K. K., Ringrose, S. and Macko, S. A. Spatial patterns of soil nutrients in two southern African savannas. Journal of Geophysical Research-Biogeosciences, 113, G2 (Apr 2008).

[164] Hagiwara, Y., Kachi, N. and Suzuki, J. I. Effects of temporal heterogeneity of watering on size of an annual forb, Perilla frutescens (Lamiaceae), depend on soil nutrient levels. Botany-Botanique, 86, 10 (Oct 2008), 1111-1116.

[165] Qi, Y. C., Dong, Y. S., Jin, Z., Peng, Q., Xiao, S. S. and He, Y. T. Spatial Heterogeneity of Soil Nutrients and Respiration in the Desertified Grasslands of Inner Mongolia, China. Pedosphere, 20, 5 (Oct 2010), 655-665.

[166] Goovaerts, P. and Chiang, C. N. Temporal persistence of spatial patterns for mineralizable nitrogen and selected soil properties. Soil Science Society of America Journal, 57, 2 (Mar-Apr 1993), 372-381.

[167] Fagbami, A., Ajayi, S. O. and Ali, E. M. Nutrient distribution in the basement-complex soils of the tropical, dry rainforest of southwestern nigeria .1. macronutrients - calcium, magnesium, and potassium. Soil Science, 139, 5 (1985), 431-436.

[168] Bai, J. H., Ouyang, H., Xiao, R., Gao, J. Q., Gao, H. F., Cui, B. S. and Huang, L. B. Spatial variability of soil carbon, nitrogen, and phosphorus content and storage in an alpine wetland in the Qinghai-Tibet Plateau, China. Australian Journal of Soil Research, 48, 8 (2010), 730-736.

[169] Bai, J. H., Wang, Q. G., Deng, W., Gao, H. F., Tao, W. D. and Xiao, R. Spatial and seasonal distribution of nitrogen in marsh soils of a typical floodplain wetland in Northeast China. Environmental Monitoring and Assessment, 184, 3 (Mar 2012), 1253-1263.

[170] Behera, S. K. and Shukla, A. K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degradation & Development, 26, 1 (Jan 2015), 71-79.

[171] Gao, Z. Q., Fang, H. J., Bai, J. H., Jia, J., Lu, Q. Q., Wang, J. J. and Chen, B. Spatial and seasonal distributions of soil phosphorus in a short-term flooding wetland of the Yellow River Estuary, China. Ecological Informatics, 31 (Jan 2016), 83-90.

[172] Orwin, K. H., Bertram, J. E., Clough, T. J., Condron, L. M., Sherlock, R. R. and O'Callagha, M. Short-term consequences of spatial heterogeneity in soil nitrogen concentrations caused by urine patches of different sizes. Applied Soil Ecology, 42, 3 (Jul 2009), 271-278.

[173] Sanderson, M. A., Feldmann, C., Schmidt, J., Herrmann, A. and Taube, F. Spatial distribution of livestock concentration areas and soil nutrients in pastures. Journal of Soil and Water Conservation, 65, 3 (May-Jun 2010), 180-189.

[174] Bump, J. K., Peterson, R. O. and Vucetich, J. A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology, 90, 11 (Nov 2009), 3159-3167.

[175] Hawke, D. J. [i]Variability of delta N-15 in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs. Australian Journal of Soil Research, 39, 2 (2001), 373-383.

[176] Garcia-Palacios, P., Maestre, F. T., Bradford, M. A. and Reynolds, J. F. Earthworms modify plant biomass and nitrogen capture under conditions of soil nutrient heterogeneity and elevated atmospheric CO2 concentrations. Soil Biology & Biochemistry, 78 (Nov 2014), 182-188.

[177] Ewers, B., Binkley, D. and Bashkin, M. Influence of adjacent stand on spatial patterns of soil carbon and nitrogen in Eucalyptus and Albizia plantations. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 26, 8 (Aug 1996), 1501-1503.

[178] Garcia-Palacios, P., Maestre, F. T. and Gallardo, A. Soil nutrient heterogeneity modulates ecosystem responses to changes in the identity and richness of plant functional groups. Journal of Ecology, 99, 2 (Mar 2011), 551-562.

[179] Garcia-Palacios, P., Maestre, F. T. and Milla, R. Community-aggregated plant traits interact with soil nutrient heterogeneity to determine ecosystem functioning. Plant and Soil, 364, 1-2 (Mar 2013), 119-129.

[180] Orlova, M. A., Lukina, N. V., Tutubalina, O. V., Smirnov, V. E., Isaeva, L. G. and Hofgaard, A. Soil nutrient's spatial variability in forest-tundra ecotones on the Kola Peninsula, Russia. Biogeochemistry, 113, 1-3 (May 2013), 283-305.

[181] Schlesinger, W. H., Raikes, J. A., Hartley, A. E. and Cross, A. E. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77, 2 (Mar 1996), 364-374.

[182] Gibson, D. J. [ion exchange]Spatial and temporal heterogeneity in soil nutrient supply measured using insitu ion-exchange resin bags. Plant and Soil, 96, 3 (1986), 445-450.

[183] Debusk, W. F., Reddy, K. R., Koch, M. S. and Wang, Y. Spatial-distribution of soil nutrients in a northern everglades marsh - water conservation area 2a. Soil Science Society of America Journal, 58, 2 (Mar-Apr 1994), 543-552.

[184] Lu, X. T., Freschet, G. T., Flynn, D. F. B. and Han, X. G. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 100, 1 (Jan 2012), 144-150.

[185] Tuma, I., Holub, P. and Fiala, K. Soil nutrient heterogeneity and competitive ability of three grass species (Festuca ovina, Arrhenatherum elatius and Calamagrostis epigejos) in experimental conditions. Biologia, 64, 4 (Aug 2009), 694-704.

[186] Washburn, C. S. M. and Arthur, M. A. Spatial variability in soil nutrient availability in an oak-pine forest: potential effects of tree species. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 33, 12 (Dec 2003), 2321-2330.

[187] Cao, C. Y., Jiang, S. Y., Ying, Z., Zhang, F. X. and Han, X. S. Spatial variability of soil nutrients and microbiological properties after the establishment of leguminous shrub Caragana microphylla Lam. plantation on sand dune in the Horqin Sandy Land of Northeast China. Ecological Engineering, 37, 10 (Oct 2011), 1467-1475.

[188] Housman, D. C., Yeager, C. M., Darby, B. J., Sanford, R. L., Kuske, C. R., Neher, D. A. and Belnap, J. Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biology & Biochemistry, 39, 8 (Aug 2007), 2138-2149.

[189] Mudrak, E. L., Schafer, J. L., Fuentes-Ramirez, A., Holzapfel, C. and Moloney, K. A. Predictive modeling of spatial patterns of soil nutrients related to fertility islands. Landscape Ecology, 29, 3 (Mar 2014), 491-505.

[190] Fisher, E., Thornton, B., Hudson, G. and Edwards, A. C. The variability in total and extractable soil phosphorus under a grazed pasture. Plant and Soil, 203, 2 (Jun 1998), 249-255.

[191] Angst, G., Kogel-Knabner, I., Kirfel, K., Hertel, D. and Mueller, C. W. Spatial distribution and chemical composition of soil organic matter fractions in rhizosphere and non-rhizosphere soil under European beech (Fagus sylvatica L.). Geoderma, 264 (Feb 2016), 179-187.

[192] Maestre, F. T. and Reynolds, J. F. Small-scale spatial heterogeneity in the vertical distribution of soil nutrients has limited effects on the growth and development of Prosopis glandulosa seedlings. Plant Ecology, 183, 1 (Mar 2006), 65-75.

[193] Maestre, F. T., Bradford, M. A. and Reynolds, J. F. Soil nutrient heterogeneity interacts with elevated CO2 and nutrient availability to determine species and assemblage responses in a model grassland community. New Phytologist, 168, 3 (Dec 2005), 637-649.

[194] Cahill, J. F. and Casper, B. B. Growth consequences of soil nutrient heterogeneity for two old-field herbs, Ambrosia artemisiifolia and Phytolacca americana, grown individually and in combination. Annals of Botany, 83, 4 (Apr 1999), 471-478.

[195] Zhou, J., Dong, B. C., Alpert, P., Li, H. L., Zhang, M. X., Lei, G. C. and Yu, F. H. Effects of soil nutrient heterogeneity on intraspecific competition in the invasive, clonal plant Alternanthera philoxeroides. Annals of Botany, 109, 4 (Mar 2012), 813-818.

[196] Zou, X. H., Wu, P. F., Chen, N. L., Wang, P. and Ma, X. Q. Chinese fir root response to spatial and temporal heterogeneity of phosphorus availability in the soil. Canadian Journal of Forest Research, 45, 4 (Apr 2015), 402-410.

[197] Caldwell, M. M., Manwaring, J. H. and Durham, S. L. Species interactions at the level of fine roots in the field: Influence of soil nutrient heterogeneity and plant size. Oecologia, 106, 4 (Jun 1996), 440-447.

[198] Tsunoda, T., Kachi, N. and Suzuki, J. I. Interactive effects of soil nutrient heterogeneity and belowground herbivory on the growth of plants with different root foraging traits. Plant and Soil, 384, 1-2 (Nov 2014), 327-334.

[199] Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S., Hillebrand, H., Lind, E. M., Adler, P. B., Alberti, J., Anderson, T. M., Bakker, J. D., Biederman, L., Blumenthal, D., Brown, C. S., Brudvig, L. A., Buckley, Y. M., Cadotte, M., Chu, C. J., Cleland, E. E., Crawley, M. J., Daleo, P., Damschen, E. I., Davies, K. F., DeCrappeo, N. M., Du, G. Z., Firn, J., Hautier, Y., Heckman, R. W., Hector, A., HilleRisLambers, J., Iribarne, O., Klein, J. A., Knops, J. M. H., La Pierre, K. J., Leakey, A. D. B., Li, W., MacDougall, A. S., McCulley, R. L., Melbourne, B. A., Mitchell, C. E., Moore, J. L., Mortensen, B., O'Halloran, L. R., Orrock, J. L., Pascual, J., Prober, S. M., Pyke, D. A., Risch, A. C., Schuetz, M., Smith, M. D., Stevens, C. J., Sullivan, L. L., Williams, R. J., Wragg, P. D., Wright, J. P. and Yang, L. H. Herbivores and nutrients control grassland plant diversity via light limitation. Nature, 508, 7497 (Apr 2014), 517-+.

[200] Fransen, B., de Kroon, H. and Berendse, F. Soil nutrient heterogeneity alters competition between two perennial grass species. Ecology, 82, 9 (Sep 2001), 2534-2546.

[201] Casper, B. B. and Cahill, J. F. Limited effects of soil nutrient heterogeneity on populations of Abutilon theophrasti (Malvaceae). American Journal of Botany, 83, 3 (Mar 1996), 333-341.

[202] Abdallah, C. and Kheir, R. B. A quantitative model for predicting gully erosion risk in karstified Mediterranean environments: Lebanon case study. Journal of Soil and Water Conservation, 64, 2 (Mar-Apr 2009), 67A-67A.

[203] Facelli, E. and Facelli, J. M. Soil phosphorus heterogeneity and mycorrhizal symbiosis regulate plant intra-specific competition and size distribution. Oecologia, 133, 1 (Sep 2002), 54-61.

[204] Sharma, O. P., Garg, D. K., Trivedi, T. P., Chahar, S. and Singh, S. P. Evaluation of pest management strategies in organic and conventional Taraori Basmati rice (Oryza sativa) farming system. Indian Journal of Agricultural Sciences, 78, 10 (Oct 2008), 862-867.

[205] Holmes, K. W., Kyriakidis, P. C., Chadwick, O. A., Soares, J. V. and Roberts, D. A. Multi-scale variability in tropical soil nutrients following land-cover change. Biogeochemistry, 74, 2 (Jun 2005), 173-203.

[206] Bai, J. H., Deng, W., Wang, Q. G., Cui, B. S. and Ding, Q. Y. Spatial distribution of inorganic nitrogen contents of marsh soils in a river floodplain with different flood frequencies from soil-defrozen period. Environmental Monitoring and Assessment, 134, 1-3 (Nov 2007), 421-428.

DOI: https://doi.org/10.30564/jees.v1i1.526


  • There are currently no refbacks.
Copyright © 2019 Author(s)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.