Integrated Coastal Management Dynamic Models: A Case Study of Development Seaweed Cultivation in the Waters Luwu and Palopo Regency Bone Bay, South Sulawesi

Waluyo Waluyo (Marine and Fisheries Polytechnic of Karawang/Postgraduate Alumni of the Department Coastal and Marine Resources Management-FPIK IPB University)
Yonvitner , (The Department of Water Resources Management-FPIK IPB University)
Etty Riani (The Department of Water Resources Management-FPIK IPB University)
Taslim Arifin (Marine Research Center_ Ministry of Marine Affairs and Fisheries Republic Indonesia)

Article ID: 990

Abstract


Waters carrying capacity in seaweed of Eucheuma cottonii cultures should be a concernforoptimum seaweed culture. Carryingcapacity can determine by Ecological Footprint (EF) analysis, which in this research usefootprint production, and mas balance nitrate analysis. This research on Mei 2015 (1sttransitionalseason) and September 2015 (2ndtransitionalseason) in Luwu and Palopo, South Sulawesi. Map and land use analyzed with  geographic information systems (GIS).The results showed that theEcological Footprint production (EFP)in Luwu waters is 67,88 ton/capita/year, or equivalent to 235.823,93 tons/year.Based on the analysis of the availability of water for seaweed is 38.374,69 hectares, it can produce seaweed (biocapacity) for 922.928,96 tons/year and  the number of farmers that allows for use the waters is  13.595 capita. The Ecological Footprint  production (EFp) in Palopo waters is 3,08 ton/capita/year, or equivalent to 4.589,99 tons/year. Water availability analysis is 979,82 hectares are able to produce seaweed (biocapacity) for10.115,34 ton/year and the number of farmers that allows for use the waters is 3.276 capita. Based on the four scenario simulation management results of the development seaweed cultivation Eucheumacottonii in Luwu and PalopoRegency is based on the present waste input, pressing inputs of waste into the waters of 10%, 25% and 50% yield different waters biocapacity. The results comparison between biocapacity and Ecological Footprint, ecological status for  Luwu and Palopo waters are still in sustainable use.Based on those simulation results showed that in second scenario by pressing the waste input by 10% from the existing waste input, as well as assuming the availability of water utilizing the entire area of 38.374,69 hectares continuously (on the years scale of 2008-2030), it will produce the highest biocapacity waters in the amount of 8.257.274,94 tons/year. So with the management of seaweed in Palopo with second scenario, assuming the availability of water utilizing the entire area of 979,82 hectares will produce the highest waters biocapacity of 14.306,92 tons/year.


Keywords


Seaweed cultivation; Ecological footprint; Biocapacity; Waters carrying capacity; Mass balance nitrate

Full Text:

PDF

References


[1] [DKP] Dinas Kelautandan Perikanan Kabupaten Luwu. Laporantahunan perikanan Kabupaten Luwutahun 2010-2014. Belopa: DKP Kab. Luwu, 2015.

[2] [DKP] DinasKelautandanPerikanan Kota Palopo. Laporantahunan DKP Kota Palopotahun 2010-2014. Palopo: DKP Kota Palopo, 2015.

[3] Bastianoni S, Niccolucci V, Neri E, Cranston G, Galli A, Wackernagel M. Sustainable development: Ecological Footprint in accounting. in Encyclopedia of environmental management. New York: Taylor and Francis, 2013: 2467-2481.

[4] Wackernagel M. Ecological Footprint and appropriated carrying capacity: a tool for planning toward sustainability [dissertation]. Vancouver, Canada: School of Community and Regional Planning. The University of British Columbia, 1994.

[5] Wackernagel M, Rees WE. Sharring nature interest. London: Earth Scan Publication, 1996: 186.

[6] Rees WE. Ecological Footprint and appropriated carrying capacity : what urban economics leaves out. J Environment and urbanization, 1992, 4: 2.

[7] Rees WE. Revisiting carrying capacity: area-based indicators of sustainability. J Population and Environment, 1996 , (17): 195-215.

[8] Prahasta E. Konsep-konsep dasar sistem informasi geografis. Bandung: CV Informatika, 2002.

[9] Randers J. Elements of the system dynamics method. Portland : Productivity Press. 1980: 344.

[10] Albin S.. Building a system dynamics model. Part 1: Conceptualization. Prepared for the MIT system dynamics in education project under the supervision of Dr. Jay W. Forrester. Massachusetts Institute of Technology. 1997, D-4597.

[11] Isee System. Technical document for the iThink and STELLA Software, 2016. Available at:

[12] http://www.iseesystems.com. [Accessed 17 February 2016]

[13] [YSI Inc] Yellow Springs Instrument Incorporated. The basics of chlorophyll measurement. In YSI Environmental. Tech Note, 2006. Retrieved from

[14] http://www.ysi.com/media/pdfs/T606-The-Basics-of-Chlorophyll-Measurement.pdf

[15] Kawabe M, Kawabe M. Temporal and spatial characteristics of chemical oxygen demand in Tokyo Bay. Journal of Oceanography, 1997, (53): 443-453.

[16] Glenn EP, Doty MS. Photosynthesis and respiration of the tropical red seaweeds, Eucheuma Striatum (Tambalang and Elkhorn Varieties) and E. denticulatum. J Aquatic Botany, 1981, 10: 353-364.

[17] Mairth OP, Zodape ST, Tewari A, Rajyaguru MR.. Culture of marine red alga Kappaphycus Striatum (Schmitz) Doty on the Saurashtra Region, West Coast of India. IndianJ. Mar. Sci, 1995, 24: 24-31.

[18] Ding L, Ma Y, Huang B, Chen S.. Effects of seawater salinity and temperature on growth and pigment contents in Hypneacervicornis J. Agardh (Gigartinales, Rhodophyta). (Lin H, Ed). Hindawi Publishing Corporation. JBioMed Research International, 2013:10.

[19] Redmond S, Green L, Yarish C, Kim J, Neefus C.. New England seaweed culture handbook-nursery systems. Connecticut Sea Grant CTSG-14-01. 2014: 92.

[20] Hayashi L, Faria GSM, Nunes BG, Zitta CS, Scariot LA, Rover T, Felix MRL, Bouzon ZL. Effects of salinity on the growth rate, carrageenan yield, and cellular structure of KappaphycusAlvarezii (Rhodophyta, Gigartinales) cultured in vitro. Journal of Applied Phycology, 2010, 23(3): 439-447.

[21] Yong WTL, Ting SH, Yong YS, Thien VY, Wong SH, Chin WL, Rodrigues KF, Anton A.. Optimization of culture conditions for the direct regeneration of Kappaphycusalvarezii (Rhodophyta, Solieriaceae). J ApplPhycol, 2013.

[22] DOI 10.1007.

[23] Gazali I.. Evaluasi Dampak Pembuangan Limbah Cair Pabrik Kertas Terhadap Kualitas Air Sungai Klinter Kabupaten Nganjuk. Jurnal Keteknikan Pertanian Tropisdan Biosistem, 2013, 1(2): 1-8.

[24] Tee MZ, Yong YS, Rodrigues KF, Yong WTL.. Growth rateanalysisand protein identification of Kappaphycusalvarezii (Rhodophyta,Gigartinales) underpHinducedstressculture. J Aquaculture Reports, 2015, 2: 112-116.

[25] Nybakken JW.. Biologilautsuatupendekatanekologis. Jakarta: Gramedia, 1992.

[26] Prema D.. Site selection and water quality in mariculture. Central Marine Fisheries Research Institute. CMFRI Manuel Customized training Book. Kerala. India, 2013.

[27] Hurd CL, Harrison PJ, Druehl LD.. Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystisintegrifolia from wavesheltered and exposed sites. J Mar Biol, 1996, 126: 205–214.

[28] Setiyanto D, Efendi I, Antara KJ.. Pertumbuhan Kappaphycusalvarezii var Maumare, var Sacoldan Eucheumacottonii di Perairan Musi Buleleng. JurnalIlmuKelautan, 2008, 13(3): 171-176.

[29] [PHILMINAQ] Mitigating Impact from Aquaculture in the Philippines. Annex. Water Quality Criteria and Standards for Freshwater and Marine Aquaculture, 2006, 2.

[30] http://www.aquaculture.asia/files/PMNQ%20 WQ%20standard%202.pdf [Accessed 20 December 2015].

[31] [AMWQ] ASEAN Marine Water Quality. Management guidelines and monitoring manual. Jakarta: The ASEAN Secretariat, 2008.

[32] Shanmugam P, Neelamani S, Hwan Ahn Y, Philip L, Hoon Hong G. Assessment of the levels of coastal marine pollution of Chennai city, Southern India. J Water Resour Manage, 2006.

[33] DOI: 10.1007/s11269-006-9075-6.

[34] Samawi MH.. Desainsistempengendalianpencemaranpantaikota (studikasusperairanpantai Kota Makassar) [tesis]. Bogor: Institut Pertanian Bogor, 2007.

[35] Zang H, Li L, Zou Z.. The research of seawater chemical oxygen demand measurement technology with ozone oxidation method. Shao F, Shu W and Tian T (Eds). Proceedings of the 2015 International Conference on Electric, Electronic and Control Engineering. London: Taylor & Francis Group. 2015: 787.

[36] [KLH] Kementerian Lingkungan Hidup R.I.. Keputusan Menteri Negara Kependudukandan Lingkungan Hidup Nomor 02 Tahun 1988 tentang Pedoman Penetapan Baku Mutu Lingkungan. Jakarta, 1988.

[37] Boyd CE.. Water quality in pond for aquaculture. Binningham Publishing Co, 1990.

[38] [APHA] American Public Health Association. Standard methods for the examination of water and waste water (20th Edition ed.). Washington D.C. USA, 1998.

[39] Sastrawijaya AT.. Pencemaran Ling kungan. Jakarta: RinekaCipta, 2000.

[40] Harrison PJ, Hurd CL.. Nutrient physiology of seaweeds : Application of concepts to aquaculture. J Cahiers de Biologie Marine, 2001, 42: 71-82.

[41] Hurd CL, Harrison PJ, Bischof K, Lobban CS.. Seaweed ecology and physiology. (2th Edition ed.). Cambridge: Cambridge University Press, 2014.

[42] Fong P, Paul VJ.. Coral reef algae. in Z. Dubinsky and N. Stambler, editors. Coral reefs: an ecosystem in transition. Springer, 2011: 241-272.

[43] Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE.. Nutrient co-limitation of primary producer communities. J Ecology Letters, 2011, 14: 852-62.

[44] Alstyne KLV, Pelletreau KN.. Effects of nutrient enrichment on growth and phlorotannin production in Fucusgardneri embryos. J Mar Ecol Prog Ser, 2000, 206: 33-43.

[45] Adrianto L.. Fishery resources appropriation as sustainability indicator: An ecological footprint approach. Bogor: PKSPL IPB, 2010.

[46] MacLeod M, Cooper JAG.. Carrying capacity in coastal areas. Encyclopedia of Coastal Science. Springer: Schwartz M. (Ed.), 2005.

[47] Widigdo B, Pariwono J.. Dayadu kungperairan di pantaiutara Jawa Barat untukbudidayaudang (Studikasus di Kabupaten Subang, Teluk Jakarta danSerang). JurnalIlmu-Ilmu Perairandan Perikanan Indonesia, 2003, 1: 10-17.

[48] Kapraun DF.. Field and culture studies on growth and reproduction of Callithamnionbyssoides (Rhodophyta, Ceramiales) in North Carolina. J. Phycol, 1978, 14: 21-24.

[49] Boyd CE dan Lichtkoppler F,. Water quality management in pond fish culture. (4th Edition ed.). International Center for Aquaculture, Agriculture Experiment Station, Auburn, USA, 1982.

[50] [KLH] Kementerian Lingkungan Hidup R.I.. Keputusan Menteri Negara Kependudukandan Lingkungan Hidup Nomor 51 Tahun 2004 tentang Baku Mutu Air Laut. Jakarta, 2004.



DOI: https://doi.org/10.30564/jms.v1i2.990

Refbacks

  • There are currently no refbacks.
Copyright © 2019 Waluyo *, Yonvitner -, Etty Riani, dan Taslim Arifin


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.