On-chip Spectrometer Formed by a Multi-stage Structure

Weiping Wang (Information Science Academy of China Electronics Technology Group Corporation, Beijing, China, 100086)
Li Jin (No.38 Research Institute of China Electronics Technology Group Corporation)
Shaoyu Zhao (Information Science Academy of China Electronics Technology Group Corporation)
Zhipeng Hu (No.38 Research Institute of China Electronics Technology Group Corporation)
Xiaoyan Hu (Information Science Academy of China Electronics Technology Group Corporation)

Article ID: 648

Abstract


With apparent size and weight advantages, on-chip spectrometer could be a good choice for the spectrum analysis application which has been widely used in numerous areas such as optical network performance monitoring, materials analysis and medical research. In order to realize the broadband and the high resolution simultaneously, we propose a new on-chip spectrometer structure, which is a two-stage structure. The coarse wavelength division is realized by the cascaded Mach-Zehnder interferometers, which is the first stage of the spectrometer. The output of the Mach-Zehnder interferometers are further dispersed by the second stage structure, which can be realized either by arrayed waveguide gratings or by digital Fourier transform spectrometer structure. We further implemented the thermo-optic modulation for the arrayed waveguide gratings to achieve a higher spectral resolution. The output channel wavelengths of the spectrometer are modulated by the embedded heater to obtain the first order derivative spectra of the input optical signal to obtain a 2nm resolution. With respect to the computer simulation and device characterization results, the 400nm spectral range and the nanoscale resolution have been demonstrated.


Keywords


Integrated; Silicon-on-insulator; Broadband; Thermos-optic modulation; Spectrum derivation

Full Text:

PDF

References


[1] J. T. Kindt, M. S. Luchansky, A. J. Qavi, et al. Subpicogram per milliliter detection of interleukins using silicon photonic microring resonators and an enzymatic signal enhancement strategy [J]. Anal. Chem., 8(22): 10653-10657.

[2] DOI: 10.1021/ac402972d

[3] E. Ryckeboer, R. Bockstaele, M. Vanslembrouck, et al. Glucose sensing by waveguide-based absorption spectroscopy on a silicon chip [J]. Biomed. Opt. Express, 5(5): 1636–1648.

[4] DOI: 10.1364/BOE.5.001636

[5] Y. Chen, H. Lin, J. Hu, et al. Heterogeneously Integrated Silicon Photonics for the Mid-Infrared and Spectroscopic Sensing [J]. ACS Nano, 5(7): 6955–6961.

[6] DOI: 10.1021/nn501765k

[7] Tseng V F G, Xie H.. Simultaneous piston position and tilt angle sensing for large vertical displacement micromirrors by frequency detection inductive sensing [J]. Applied Physics Letters, 107(21): 214102.

[8] DOI: 10.1063/1.4936375

[9] Noel H. Wan, Fan Meng, Tim Schröder, Ren-Jye Shiue, et al. High-resolution optical spectroscopy using multimode interference in a compact tapered fibre [J]. Nat. Commun., 6: 7762.

[10] DOI: 10.1038/ncomms8762

[11] Redding, B., Liew, S. F., Bromberg, Y., et al. Evanescently coupled multimode spiral spectrometer [J]. Optica, 3: 956–962.

[12] DOI: 10.1364/OPTICA.3.000956

[13] Subramanian, A. Z. et al. Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [J]. Photonics Res., 3: B47–B59.

[14] DOI: 10.1364/PRJ.3.000B47

[15] Podmore H, Scott A, Cheben P, et al. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer [J]. Opt. Lett., 42(7): 1440–1443.

[16] DOI: 10.1364/OL.42.001440

[17] Akca, B. I.. Design of a compact and ultrahigh-resolution Fourier-transform spectrometer [J]. Opt. Express, 25(2): 1487–1494.

[18] DOI: 10.1364/OE.25.001487

[19] Herrero-Bermello A, Velasco AV, Podmore H, et al. Temperature dependence mitigation in stationary Fourier-transform on-chip spectrometers [J]. Opt. Lett., 42(11): 2239–2242.

[20] DOI: 10.1364/OL.42.002239

[21] Sabry, Y. M., Khalil, D., Bourouina, T.. Monolithic silicon-micromachined free-space optical interferometers on chip [J]. Laser Photonics Rev., 9(1): 1–24.

[22] DOI: 10.1002/lpor.201400069

[23] Erfan M, Sabry YM, Sakr M, et al. On-Chip Micro-Electro-Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing [J]. Appl. Spectrosc., 70(5): 897–904.

[24] DOI: 10.1177/0003702816638295

[25] A. E.-J. Lim, Junfeng Song, Qing Fang, et al. Review of Silicon Photonics Foundry Efforts [J]. IEEE J. Sel. Top. Quantum Electron., 20(4): 405–416.

[26] DOI: 10.1109/JSTQE.2013.2293274

[27] Dwivedi, S., et al. Coarse wavelength division multiplexer on silicon-on-insulator for 100 GbE [R]. in Group IV Photonics (GFP) IEEE 12th International Conference, 2015.

[28] DOI: 10.1109/Group4.2015.7305928

[29] Seyringer, D., et al. Design and simulation of 20-channel 50-GHz Si3N4-based arrayed waveguide grating applying AWG-parameters tool [R]. in SPIE OPTO. 2017: SPIE.

[30] DOI: 10.1117/12.2249675

[31] Giese, A.T. and C.S. French. The analysis of overlapping spectral absorption bands by derivative spectrophotometry [J]. Applied spectroscopy, 9(2): 78-96.

[32] DOI: 10.1366/000370255774634089

[33] Yang, Y., et al. Thermo-Optically Tunable Silicon AWG With Above 600 GHz Channel Tunability [J]. IEEE Photonics Technology Letters, 27(22): 2351-2354.

[34] DOI: 10.1109/LPT.2015.2464073

[35] Li, J., Lu, D.-f. & Qi, Z.-m. Miniature Fourier transform spectrometer based on wavelength dependence of half-wave voltage of a LiNbO3 waveguide interferometer [J]. Opt. Lett., 39(13): 3923-3926.

[36] DOI: 10.1364/OL.39.003923

[37] Kita, D. et al. On-chip infrared spectroscopic sensing: redefining the benefits of scaling [J]. IEEE Journal of Selected Topics in Quantum Electronics, 23: 5900110.

[38] DOI: 10.1109/PIERS.2016.7734993

[39] Lin Hongtao,Luo Zhengqian, Gu Tian, et al. Mid-infrared integrated photonics on silicon: a perspective [J]. Nanophotonics, 7: 393-420.

[40] DOI: 10.1515/nanoph-2017-0085



DOI: https://doi.org/10.30564/ssid.v1i1.648

Refbacks

  • There are currently no refbacks.
Copyright © 2019 Li Jin, Shaoyu Zhao, Zhipeng Hu, Xiaoyan Hu


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.